

CONNECT THE WORLD CONNECT THE FUTURE

- Smart Home
- Networking
- Optoelectronics
- Automotive Electronics
- Laptop Industry
- New Energy Industry

Established Taiwan, year 1990

Main Business CviLux Brand & ODM/OEM Business

Key Products

Connector, FFC, Wire Harness, Cable Assemblies, PCBA, Electronic Components, 3C Product ... etc.

Competitive Advantage

(1) Listed Company in Taiwan Stock Market (TWSE8103)

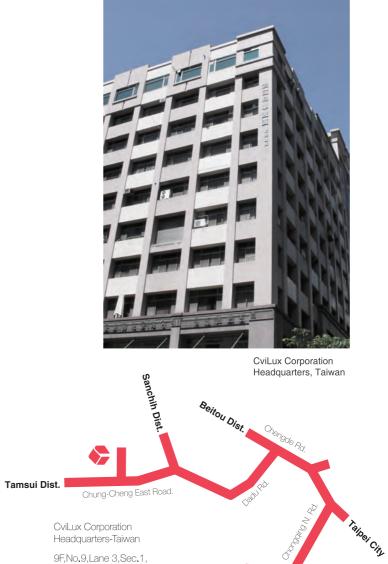
- (2) Worldwide Sales Network
- (3) Advance ERP & Customer Service
- (4) Integrated Marketing Service System
- (5) Turnkey Green Product Solution
- (6) International Standard of QC & Certificates

Factory & Office Location

Taiwan - Tamsui Plant - Headquarters (CCT)

- China Dongguan Plant 1 (CED) Dongguan Plant - 2 (DQH) Dongguan Plant - 3 (CED2) Suzhou Plant (HBC) Chongqing Plant (CQC) Anhui Plant (AHC) Shenzhen Office (CTS) - Lao Plant (LAO) Lao
- USA - USA Office (CUC)

Sales Agent


Allsor Technology Corporation (Taiwan) Allsor (Dongguan) Technology Corporation (China)

Quality Policy

Improve Our Product Quality & Operation System To Satisfy Our Customer's Demand

I.P.O.

TWSE8103 (Taiwan Stock Exchange Corp.)

Headquarters-Taiwan

9F,No.9,Lane 3,Sec.1, Chung-Cheng East Road, Tamsui Dist., New Taipei City 25147, Taiwan

S

Freeway No. 1

CviLux Electronics (Dongguan) Co., Ltd.

🔶 CviLux

CviLux Technology (Shenzhen) Corporation

CviLux Technology (Chongqing) Corporation

Dongguan Qunhan Electronics Co., Ltd.

ERMS

Sample Request

Samples will be dispatched out by freight collected courier against prices approved by customers.

Tape & Reel Request

T/R available, please consult manufacturer for details

Quotation Validity

Quoted prices are based on current selling prices and will be valid within 6 months from issued date. CviLux reserves the right to adjust guoted prices any time in response to International raw material costs or simply error correction on typing.

Export Payment Terms

Standard term is T/T in advance. Payment term extension application to be approved by CviLux individually.

Minimum Package Quantity

Customer order quantity should meet our minimum package quantity for purpose of inventory control and speeding up for delivery.

Minimum Order Quantity

To smooth production process, please place orders to mee our MOQ based on different products.

Delivery Term

(A) Air shipment amount over USD 5000/ EURO 450 F.C.A. Taiwan/H.K./ Shanghai.

(B) Air shipment amount less than USD 5000 / EURO 4500 F.C.A. Taiwan/H.K./ Shanghai + handling charge USD 350/ EURO 310 or EXW without handling charge.

(C) Sea shipment amount over USD 12000/ EURO 11000 F.O.B. Taiwan/H.K./ Shanghai.

(D) Sea shipment amount less than USD 12000/ EURO 11000: F.O.B. Taiwan/H.K./Shanghai + handling charge USD 350/ EURO 310 or EXW without handling charge. CviLux reserves the right to adjust handling charge to reflect actual transportation cost and exchange rate if any necessary.

Time of Delivery

All delivery dates guoted are estimated, are not guaranteed and do not form a term of contract, while every endeavor will be made to comply with these dates, CviLux shall have no liability for any delay in dispatch or delivery.

Placing Orders

Please place a formal order by fax, e-mail. Verbal Phone orders will not be accepted or entered into our system. place a formal order by fax, e-mail. Verbal phone orders will not be accepted or entered into our system.

Orders Cancellation and Changes

Customer's orders' cancellation or changes should be informed in 3 days after orders placing. Any unrecoverable manufacturing cost raised by the cancellation and changes will be charged to the customers.

Shipping

Special shipping instruction will be followed whenever possible. If no special demand of shipping, we will deliver the shipment to you with the "best way."

Constant Product Improvement

The products supplied may not be agreed in all details with description and illustrations. Product specifications are subject to constant improvement.

Guarantee

All "non-customized" parts from CviLux Corporation are unconditionally guaranteed for 30 days from the date of shipment.

Warranty

CviLux Corporation warrants the materials and workmanship of its products for 80 days from the date of shipment.

Returned Goods

Any defects or errors for which we are responsible will be promptly rectified. Approval for return of goods must be requested by CviLux. All products returned must have been purchased from CviLux Corporation within 6 months from the date of invoice, and must be packed and shipped in clean and re-saleable condition. Credit for returned goods shall only be allowed by receiving CviLux official credit notes acer above requirements have been met

Force Majeure

CviLux shall have no liability in respect of failure to deliver or per form or delay in delivering or performing any obligations to the customer, due to any cause of whatsoever nature outside of the reasonable control of the seller including but not limited to causes arising from acts or omissions of the customer.

Export Control Regulations

Some or All of the goods supplied by CviLux may be subject to export control regulations. Such goods may not be exported by the customer without prior approval of the relevant authorities. It is the responsibility of the customer to obtain such approval. Under no circumstances shall the seller be liable for any loss or damages incurred by the customer as a result of customer's contravention of any export control regulations.

🔶 CviLux

Smart Home

Wire to Board & Cable Assembly

Power Connectors

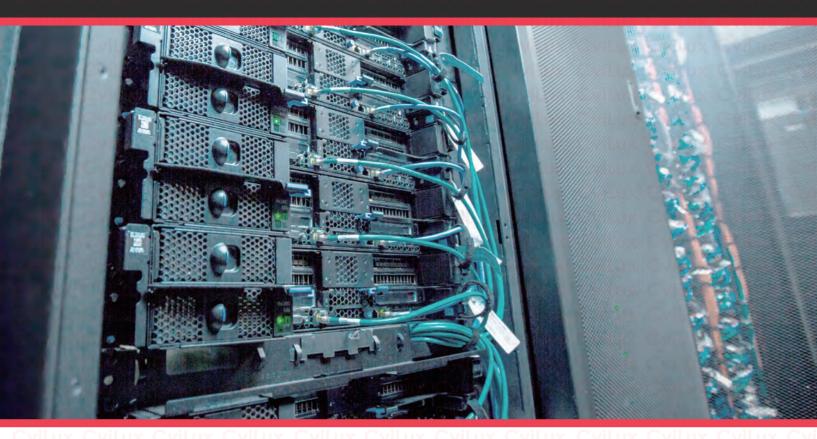
Pin Headers

RF Connectors

USB Type C Connectors & Cable

D-SUB Connectors

FFC/ FPC Connectors



🔶 CviLux

Wire to Board & Cable Assembly

Pin Headers

RF Connectors

USB Type C Connectors & Cable

FFC/ FPC Connectors & FFC

D-SUB & Combo D-SUB

Mini PCI-E

Optoelectronics

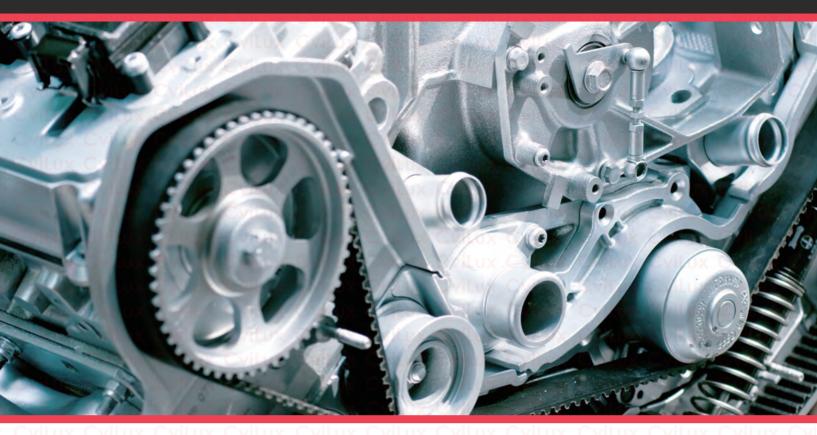
Wire to Board Connectors & Harness Cable

Power Connectors

LED Holder

😽 CviLux

USB Type C Connectors & Cable



Automotive Electronics

IDC Connectors & Cable

FFC/FPC Connectors & FFC

USB Type C Connectors & Cable

Pin Headers

Power Connectors

BTB Connectors

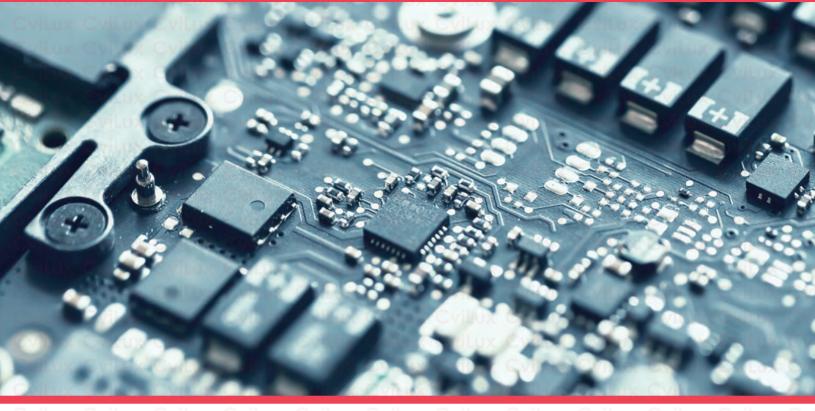
D-SUB

Jumper

😽 CviLux

USB

IC socket



Laptop Industry

Wire to Board Connectors

USB Type C Connectors 1/0 Connectors

😽 CviLux

New Energy Industry

Wire to Board Connectors

FFC/FPC Connectors & FFC

USB Type C Connectors

BTB Connectors

1/O Connectors

😽 CviLux

PRODUCT CATEGORY

Cvilux Cvilux Cvilux Cvilux Cvilux Cvilux Cvilux Cvilux Cv Cvilux Cvilux Cvilux Cvilux Cvilux Cvilux Cvilux Cv

ScviLux

CviLux CviLux CviLux CviLux CviLux CviLux CviLux CviLux

PRODUCT CATEGORY

CviLux CviLux

😽 CviLux

Cvilux Cvilux Cvilux Cvilux Cvilux Cvilux Cvilux Cvilux Cvilu

PRODUCT CATEGORY

STATEMENT OF ENVIRONMENTAL FRIENDLY POLICY

As members of global community, we should all be aware of limited resource consumption and increasing pollution's impact to earth. Our next generation and living animals could live in a dangerous environment without our efforts. Because of this, CviLux Corporation commits to provide environmental friendly products to its clients by using less energy and efficient production. CviLux spirit is to preach such green mind to all the employees and partners who are working closely with us.

Definition:

RoHS Compliant and Lead Free Soldering Process

This letter is released to explain the difference between RoHS compliant and Lead Free Soldering Process. These terms confused R&D designers a lot when they need to select right components and processes for their designs. With this letter, we hope to minimize the confusion and clarify these terms to any one who is interested in this topic.

- RoHS compliant: Indicates raw material of product contained forbidden material within the limitation defined by RoHS directive 2011/65/EU & 2015/863/EU.

- Lead Free Soldering Process: Indicates products themselves can stand specific soldering profile such as J-STD-020C/D or SS-00254.

Currently, there are still no fixed lead free soldering process can be adopted to all kinds of components. For SMT components, the most widely used norms are J-STD-020C/D and SS-00254. As for THT components, JESD22-B106C is the most popular one. CviLux has already set these norms as the standard processes to follow. The details of related soldering temperature of above norms can be found in CviLux product specifications.

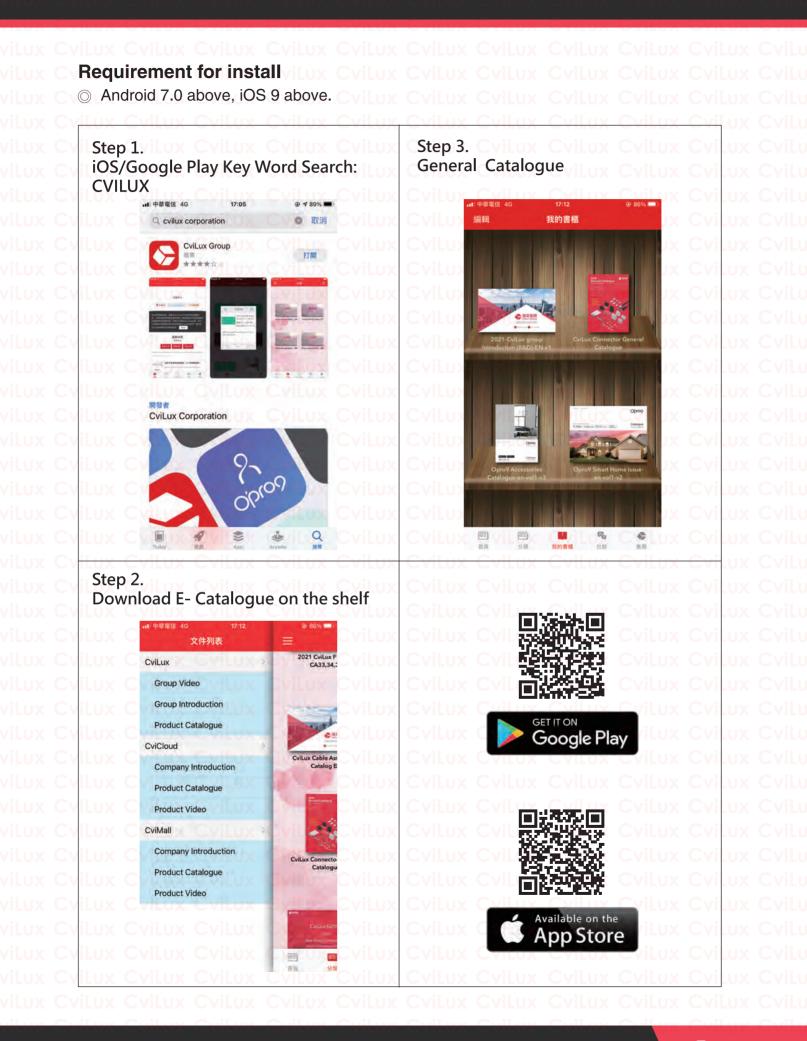
Besides, there is still one important concept- It is not a must for RoHS compliant components to adapt Lead Free soldering process. In some cases, it is possible that components are RoHS compliant but not available for lead free soldering process. On the contrary, components available for lead free soldering process are always RoHS compliant. One obvious example is that when cable assemblies can meet RoHS standard, it refers to that the raw materials are environmental friendly only but nothing related to lead free soldering process. PCB components apply the same to the above. Halogen Free

Halogens are 5 non-metallic elements in group VIA of the periodic table Fluorine, Chlorine, Bromine, Lodine, Astatine. Halogens exists, at room temperature, in all three status, Solid (Lodine, Astatine), Liquid (Bromine) and Gas (Fluorine, Chlorine). Currently, only 2 of these 5 elements are normative by IEC, which are Cl and Br,

Why does Halogen Free become new challenges to connector manufacturers? Because the common used connector raw materials like PA66 and PBT are without fire resistance characteristic originally, to strengthen fire resistance characteristic in connector raw materials, Brominated Flame Retardants are used as additive. However, with more and more emphasis on the importance of Halogen Free products, the use of Brominated Flame Retardants becomes more and more difficult and is restricted by content. To adapt this world wide trend, CviLux has had set its standard of Halogens Free policy according to IEC 61249-2-21 and produce the products since Jan. 2008.

900 ppm maximum Cl.

900 ppm maximum Br


1500 ppm total Halogens.

Meanwhile, as the research of alternative materials/solutions for better performance plastics is progressing, CviLux will take part in this trend and provide its customers with latest technical support.

iLux CviLux CviL iLux CviLux CviL

🔶 CviLux

CviLux BOOK STORE INSTALL

🔶 CviLux

RoHS Complia	t : RoHS Compliant	: TUV Certificated	
	Free soldering process	Cviluy Sviluy Cviluy Cviluy Cviluy Cvi	
Series	Pitch(mm/inch)	Description	
A. FFC / I	FPC Connectors		
System CF	CVIEUX CVIEUX	Construction of Connector	
<u>vilux (</u>	<u>Cvilux</u> Cvilux	Connection Combinations of Connector and FFC Cable	LUX 2
CF58	0.30(.012")	H=0.90 SMT ZIF FFC/FPC Connectors(Back Lock)	4
CF38	0.30(.012")	H=1.00 SMT ZIF One-Touch FFC/FPC Connectors	5
CF30	0.30(.012")	H=1.25 SMT ZIF One-Touch FFC/FPC Connectors	6
CF86	0.50(.020")	H=0.90 ZIF Side Entry SMT Type FFC/FPC Connectors	LUX 7
CF42	0.50(.020")	H=0.96 SMT ZIF One-Touch FFC/FPC Connectors (Back Flip)	8
CF35	0.50(.020")	H=0.96 SMT ZIF One-Touch FFC/FPC Connectors	10
CF87	0.50(.020")	H=0.98 ZIF Side Entry SMT Type FFC/FPC Connectors (Back Flip)	13
CF92	0.50(.020")	H=1.22 SMT ZIF One-Touch FFC/FPC Connectors	14
CF55 CF88	0.50(.020")	H=1.25 SMT ZIF One-Touch FFC/FPC Connectors H=1.57 ZIF Side Entry SMT Type FFC/FPC Connectors (Back Flip)	15 16
CF88 CF69	0.50(.020")	H=1.57 ZIF Side Entry SMT Type FFC/FPC Connectors (Back Flip) H=1.75 SMT LIF One-Touch FFC/FPC Connectors	17
CF39	0.50(.020")	SMT One - Touch FFC/FPC Connectors	18
CF75	0.50(.020")	SMT One-Touch FFC/FPC Connectors	LUX 19
CF82	0.50(.020")	H=2.00 SMT ZIF One-Touch FFC/FPC Connectors	20
	1.00(.039")	H=2.00 SMT ZIF One-Touch FFC/FPC Connectors	21
CF76	0.50(.020")	H=2.10 SMT LIF FFC/FPC Connectors	21
CF85	0.50(.020")	H=2.20 SMT ZIF One-Touch FFC/FPC Connectors	23
CF90	0.50(.020")	H=2.20 ZIF FFC/FPC Connectors	LUX 24
CF50	0.50(.020")	H=1.46 SMT ZIF One-Touch FFC/FPC Connectors	25
	1.00(.039")	H=1.46 SMT ZIF One-Touch FFC/FPC Connectors	28
CF61	0.50(.020")	H=1.75 SMT ZIF One-Touch FFC/FPC Connectors	32
CF31	0.50(.020")	H=1.95 SMT ZIF One-Touch FFC/FPC Connectors	33
VILUX	1.00(.039")	H=1.95 SMT ZIF One-Touch FFC/FPC Connectors	LUX 34
CF34	0.50(.020")	H=1.95 SMT ZIF One-Touch FFC/FPC Connectors	LUX 36
CF25	0.50(.020")	H=2.20 SMT ZIF One-Touch FFC/FPC Connectors	38
	1.00(.039")	H=2.20 SMT ZIF One-Touch FFC/FPC Connectors	40
CF11	0.50(.020")	H=2.70 SMT ZIF One-Touch FFC/FPC Connectors (Back Flip)	42
vilux (1.00(.039")	H=2.70 SMT ZIF One-Touch FFC/FPC Connectors (Back Flip)	43
CF23	0.50(.020")	H=1.20 SMT ZIF FFC/FPC Connectors	LUX 45
vilux (1.00(.039")	H=1.20 SMT ZIF FFC/FPC Connectors	46
CF20	0.50(.020")	H=2.00 SMT ZIF FFC/FPC Connectors	47
	0.50(.020")	H=3.90 SMT ZIF Vertical FFC/FPC Connectors	48
vilux (1.00(.039")	H=2.00 SMT ZIF FFC/FPC Connectors	49
CF27	0.50(.020")	H=1.20 SMT LIF FFC/FPC Connectors	LUX 50
vilux (1.00(.039")	H=1.20 SMT LIF FFC/FPC Connectors	_UX 51
CF24	0.50(.020")	H=4.20 SMT LIF Vertical FFC/FPC Connectors	52
CF95	0.80(.031")	H=1.50 SMT ZIF FFC/FPC Connectors (Back Flip)	53
CF84	0.80(.031")	H=1.57 SMT ZIF FFC/FPC Connectors (Back Flip)	54
CF32	0.80(.031")	H=1.95 SMT ZIF One-Touch FFC/FPC Connectors	LUX 55
CF37	0.80(.031")	H=1.95 SMT ZIF One-Touch FFC/FPC Connectors	LUX 56
CF07	1.00(.039")	H=2.60 SMT ZIF FFC/FPC Connectors	57
CF08	1.00(.039")	H=2.60/3.55 SMT LIF & SMT LIF Vertical FFC/FPC Connectors	58

CVILUX CVILUX CVILUX CVILTABLE OF CONTENT CVILUX CVILUX

CviLux C

CF73	1.00(.039")	H=3.30 SMT ZIF One-Toach FFC-FPC Connectors	60
CF10	1.00(.039")	H=3.80/5.00 DIP ZIF FFC/FPC Connectors	61
viluy (Cviluy Cvilu	H=5.20 SMT ZIF FFC/FPC Connectors	62
CF16	1.00(.039")	H=3.80/5.00 DIP LIF FFC/FPC Connectors	63
VILUX	CVILUX CVILU	H=3.80/5.20 SMT LIF FFC/FPC Connectors	LUX 64
CF12	1.25(.049")	H=4.00/6.80 DIP LIF FFC/FPC Connectors	UX 65
B. Flat Fl	exible Cables & I	LVDS FFC Cables	iLux C
System FFC	C Introduction	y Cyllux Cyllux Cyllux Cyllux Cyl	66
		Features & Applications & Connections	67
VILUX	CVILUX CVILU	Ordering Code & Terminal Types table	68
vilux (CviLux CviLu	Shape, Construction and Dimensions	LUX 69
vilux (CviLux CviLu	Feature & Caution	70
vilux (Cvilux Cvilu	Performance	71
CFF / CFE		Flat Flexible Cable Assemblies - LVDS FFC Cable	72
FFCA	2.54(.100")	Flat Flexible Cable Assemblies	73
C. LVDS	Connectors	IX CVILUX CVILUX CVILUX CVILUX CV	ilux C
CVS1	0.50(.020")	LVDS H=3.70 Socket Connectors for TV	1 74
CVS3	0.50(.020")	LVDS M/H=2.00 Socket Connectors for Notebook	75
CVS5	0.50(.020")	LVDS M/H=4.00 Socket Connectors for Notebook	76
CVSC	1.00(.039")	LVDS H=2.35 Socket Connectors for TV/Monitor	77
CVS7	0.50(.020")	LVDS M/H=1.05 Socket Connectors	LUX 79
	o Board Connect		iLux C
System Cl	Cvilux Cvilu	Connection Combination of Wire to Board Connectors	80
CI20	0.60(.024")	Wire to Board Connectors Housing & SMT Headers	81
CI18	0.80(.031")	Wire to Board Connectors Housing & SMT Headers	82
CI11	1.00(.039")	Single Row Wire to Board Connectors Housing & Terminal	82 83
vilux (CviLux Cvilu	Single Row Wire to Board Connectors SMT Headers	80 84
vilue	Cvilux Cvilu	Dual Row Wire to Board Connectors Housing & Terminal	85
VILUX		Dual Row Wire to Board Connectors SMT Headers	86
CI16	1.00(.039")	Wire to Board Connectors Housing & Terminal	87
vilux (Wire to Board Connectors Flotdsing & Terminal Wire to Board Connectors SMT Headers	88
CI14 UX	1.00(.039")	Wire to Board Connectors Housing & Terminal	UX 89
		Wire to Board Connectors Flotising & Terminal Wire to Board Connectors SMT Side Entry Headers	90
VILUX		Wire to Board Connectors Sixin Side Entry Headers Wire to Board Connectors Housing & SMT Side/Top Entry Headers	90
CI63	1.20(.048")	Wire to Board Connectors Housing & Sin Side Top Entry Headers Wire to Board Connectors Housing & Terminal & SMT Headers	91
	1.20(.048")	Wire to Board Connectors Housing & Terminal & SixT Headers Wire to Board SMT Headers	94
CI40	Cuitux Cuitr	N CVILDY CVILDY CVILDY CVILDY CV	95
	1.25(.049")	Wire to Board Housing & Terminal Wire to Board SMT Headers	96
CI42			97
0142	1.25(.049")	Wire to Board Housing & Terminal	
0142	1.25(.049")	Wire to Board SMT Header	99
CI43	1.25(.049")	Wire to Board Connectors Housing & Terminal & SMT Headers	100
CI44	1.25(.049")	Wire to Board Connectors Housing & Terminal	101
VILUX (Wire to Board Connectors DIP Headers	102
	<u>Cvilux Cvilu</u>	Wire to Board Connectors SMT Headers	103
CI45	1.25(.049")	Wire to Board Connectors Housing & SMT Headers	104
CI46	1.25(.049")	Wire to Board Connectors Housing & Terminal	105
		Wire to Board Connectors SMT Headers	106
	1.25(.049")	Wire to Board Connectors	LUX107
CI15	1.50(.059")	Wire to Board Connectors Housing & Terminal	108

Cvilux Cvilux Cvilux Cvil TABLE OF CONTENT Cvilux Cvilux Cvilux Cvilux Cv

VILUX	CVILUX CVILU	Wire to Board Latch Type Housing & SMT Headers	VILUX 110
CI19	1.50(.059")	Wire to Board Connectors Housing & Terminal	112
viLux	CviLux CviLu	Wire to Board Connectors SMT Headers	113
CI87	1.50(.059")	Wire to Board Connectors Housing & Terminal & SMT Headers	114
CIDW	1.50(.059")	Single Row Wire to Board Housing & Terminal	VILUX 115
viLux	CviLux CviLu	Wire to Board Connectors SMT Headers	VILUX 116
CIEJ	1.50(.059")	Single Row Wire to Board Housing & Terminal	viLux 117
vilux (Cvilux Cvilu	Single Row Wire to Board SMT Headers	118
CI07	1.80(.071")	Wire to Board Connectors Housing & Terminal	119
VILUX	CVILUX CVILU	Wire to Board Connectors SMT Headers	VILUX 120
Cl01	2.00(.079")	Single Row Wire to Board IDC Housing & Terminal	VILUX 121
viLux	CviLux CviLu	Single Row Wire to Board Connectors DIP & SMT Headers	123
vilux	Cvilux Cvilu	Single Row Wire to Board Latch Type Housing & SMT Header	124
VILUX	OVILUX OVILU	Dual Row Wire to Board Connectors Housing & Terminal	126
VILUX	CVILUX CVILU	Dual Row Wire to Board Connectors DIP Headers	127
CI02	2.00(.079")	Board In Connectors	128 VILUX 128
CI06	2.00(.079")	Wire to Board Connectors Housing & Terminal	129
vilus	Cvilux Cvilu	Wire to Board Connectors DIP & SMT Headers	130
C108	2.00(.079")	Wire to Board Connectors SMT & DIP Headers	131
CI10	2.00(.079")	Wire to Board Connectors SMT Headers	132
	2.00(.079")	Single Row Wire to Board Housing & Terminal	VILUX 135
vilux		Wire to Board Connectors SMT Headers	136
CIDY	2.00(.079")	Single Row Wire to Board Housing & Terminal	130
	2.00(.073)	Wire to Board Connectors DIP Headers	137
CID9	2.00(.079")	Single Row Wire to Board Housing & Terminal	139
		Single Row Wire to Board Riddsing & reminal Single Row Wire to Board SMT Headers	VILUX 140
CIEG	2 00(070")	Single Row Wire to Board Housing & Terminal	140
	2.00(.079")		
CIE4	2.00(.079")	Daul Row Wire to Board to Board DIP Headers	<u>vilux</u> 143
CI21	2.50(.098")	Wire to Board Connectors Housing & Terminal	144
0100		Wire to Board Connectors DIP Headers	145
CI22	2.50(.098")	Wire to Board IDC Connectors Housing & Terminal	146
VILUX		Wire to Board IDC Connectors Housing & IDC Cable	VILUX 147
	<u>CviLux CviLu</u>	Wire to Board IDC Connectors Connectors DIP Header	148 vilux 148
CI23	2.50(.098")	Wire to Board Connectors Housing & Terminal	149
vilux	Cvilux Cvilu	Wire to Board Connectors DIP Headers	150
CI25	2.50(.098")	Wire to Board Connectors Housing & Terminal	151
VILUX	CVILUX CVILU	Wire to Board Connectors DIP Headers	VILUX 152
CI26	2.50(.098")	Board In Connectors	VILUX 153
CI27	2.50(.098")	Board In Connectors	154
CI30	2.50(.098")	Wire to Board Connectors DIP Header	155
CI60	2.50(.098")	Wire to Board Connectors DIP Header & Housing & Terminal	156
CIL4	2.50(.098")	Wire to Board Connectors SMT Headers	VILUX 157
Cl31	2.54(.100")	Wire to Board Connectors Housing & Terminal	VILUX 158
vilux	CviLux Cvilu	Wire to Board Connectors DIP Headers	159
CI32	2.54(.100")	Wire to Board Connectors Housing & Terminal	160
CI34	2.54(.100")	Dual Row Wire to Board Connectors Housing	161
CI33	2.54(.100")	Single Row Wire to Board Connectors Housing	162 VILUX
viLux	CviLux CviLu	Single Row Wire to Board Connectors DIP Headers	VILUX 163
viluv	Cvilux Cvilu	Dual Row Wire to Board Connectors Connectors	164
TILUA	SVILUA SVILU	Dual Row Wire to Board Connectors	165

VILUX CVILUX CVILUX CVIL TABLE OF CONTENT CVILUX CVILUX (

CviLux Lux Cv

vilux C	vitux Cvitu	ix Cvitux Cvitux Cvitux Cvitux Cvi	Lux Cvitux /
	2.54(.100")	Wire to Board Connectors	
CI39	2.54(.100")	Wire to Board Connectors SMT Headers	Lux Cvilux ¹⁶
CI83	2.54(.100")	Friction Lock Breakaway Headers	16
CID2	2.54(.100")	IDC type Connectors	
CID7	2.54(.100")	Wire to Board Housing/Terminal/Straight Headers	
CIL1UX C	3.50(.138")	Board to Board connectors	
CI51	3.96(.156")	Wire to Board Connectors Housing & Terminal	Lux CviLux ¹
viluy C	vilux Cvilu	Wire to Board Connectors DIP Headers	Lux Cvilux ¹
CI52	3.96(.156")	Wire to Board Connectors Housing & Terminal	
VILUX C	VILUX CVILU	Wire to Board Connectors DIP Headers	LUX CVILUX ₁
viLux C	7.92(.312")	Wire to Board Connectors DIP Headers	Lux CviLux 1
CI82	3.96(.156")	Friction Lock Breakaway Headers	Lux CviLux ¹
CI77 /CI78	3.96(.156")	Breakaway Pin Headers	Lux Cvilux ¹
CID1	4.00(.157")	Wire to Board Connectors SMT Header	
CI55	5.08(.200")	Wire to Board Connectors	LUX CVILUX
E. Power C	Connectors	ix CviLux CviLux CviLux CviLux Cvi	Lux CviLux
System CP	vilux Cvilu	Connection Combination of Power Connectors	Lux CviLux ¹
CP75	1.50(.059)	Board to Board Receptacle Connector	Lux Cvilux ¹
VILUX C		Board to Board Plug Connector	1
CP14	1.50(.059")	Single Row Side Entry SMT Headers	LUX CVILUX
CP15 C	1.50(.059")	SMT Headers	LUX CVILUX ₁
CPB1	viLux CviLu	Waterproof Connectors	Lux CviLux 1
CPB2	2.00(.079")	Waterproof Connectors	Lux Cvilux ¹
CP06	2.50(.098")	Receptacle Connectors	
VILUX C	2.50(.098")	Plug Connectors	LUX CVILUX
CP25	2.50(.098")	Receptacle Connectors	LUX CVILUX ₁
CP35	3.00(.118")	Single Row Housing Connectors	Lux CviLux 1
vilux C	vilux Cvilu	Single Row Board Mount Headers	Lux Cvilux 1
		Single Row Side Entry SMT Headers	
VILUX C	VILUX CVILU	Single Row Top Entry SMT Headers	
vilux C	vitux Cvitu	Dual Row Receptacle Connectors	Lux Cvilux ₂
vilux C	viLux CviLu	Dual Row Plug Connectors	Lux CviLux 2
vilux C	vilux Cvilu	Dual Row Board Mount Headers	Lux Cvilux 2
		Dual Row Side Entry SMT Headers	2
VILUX C	VILUX CVILU	Dual Row Top Entry SMT Headers	2
CP-01	4.20(.165")	Power Connectors	LUX CVILUX
CP-011	4.20(.165")	Receptacle Connectors	LUX CVILUX2
vilux C	viLux Cvilu	Blind Mating Panel Mount Receptacle Connectors	Lux CviLux 2
		Receptacle Board Mount Connectors	2
VILUX C	VILUX CVILL	Assembly Power Connectors	2
CP-012	4.20(.165")	Plug Connectors	Lux Cvilux 2
CP-013	4.20(.165")	Straight DIP Solder Headers	LUX CVILUX2
CP-014	4.20(.165")	Right Angle DIP Solder Headers	Lux CviLux 2
CP32	5.08(.200")	Power Connectors	Lux Cvitux 2
CP33	5.08(.200")	IDC & Board Mount Receptacle Power Connectors	2
CP60	5.70(.224")	Dual Row Receptacle & Header	Lux CviLux 2
CP08	6.35(.250")	Single Row Power Connector	
F. IDC Con	, , ,	x CviLux CviLux CviLux CviLux Cvi	Lux Cvilux
System CA		Connection Combination of IDC Connectors	
-,	VILUX CVILL		LUX CVILUX

Cvilux Cv

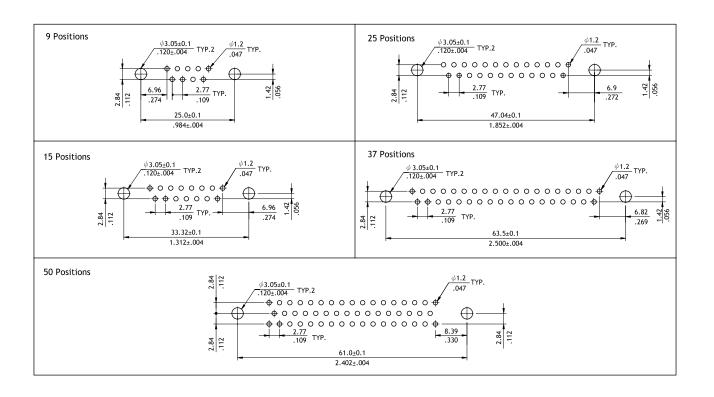
VILUX	1.27(.050")	Male IDC SMT Type Connectors	229
CA31	1.27(.050")	Flat Cable - IDC DIP Plugs	230
CA30&CA31	Cyllux Cyllu	Flat Cable Assemblies	231
CA32	1.27(.050")	Female DIP Type Connectors	232
VILUX	1.27(.050")	Female SMT Type Connectors	CVILUX233
CA33	1.27(.050")	IDC & Crimping Type Connectors	CviLU)234
CM19	CviLux CviLu	Pull-off tongs for CA33	Cvil 10 235
CA34	1.27(.050")	Flat Cable - IDC DIP Plugs	236
CA35	1.27(.050")	Male DIP Type Connectors	237
VILUX	1.27(.050")	Male SMT Type Connectors	238
CviLux (1.27(.050")	Female DIP Type Connectors	CVLU)239
CW03	1.27(.050")	Flat Ribbon Cable	CviL 240
CA11	2.00(.079")	Center Spacing Flat Cable - IDC Sockets	241
CA21	2.54(.100")	Center Spacing Flat Cable - IDC Sockets	242
CA23	2.54(.100")	Center Spacing Flat Cable - IDC DIP Plugs	243
G. Board	To Board Conne	ctors VILUX CVILUX CVILUX CVILUX	CviLux C
System CB	CviLux CviLu	Connection Combination of Board To Board Connectors	CviLuy244
`vilux	Cvilux Cvilu	Board To Board Connectors Selection Index	245
CBRH	0.40(.016")	Board to Board Connectors	248
CBRQ	0.40(.016")	Board to Board Connectors	249
CBRB	0.50(.020")	Board To Board Connectors	CVILU 250
CBRC	0.50(.020")	Board To Board Connectors	Cvilu) 252
CBRE	0.50(.020")	Board To Board Connectors	254
CBRD	0.80(.031")	Board To Board Connectors	256
CBC3	0.80(.031")	Dual Row Female Headers	258
CB03	1.00(.039")	SMT Type Single Row Pin Headers	CVILUY259
CB12	1.00(.039")	Dual Row Female Headers	259
CB01	1.27(.050")	Single Row Female Headers	260
CB50	1.27(.050")	Dual Row Female Headers	261
CBC1	1.27(.050")	Dual Row Female Headers	262
CB22	2.00(.079")	Single Row Female Headers	CVIL07264
CB74	2.00(.079")	Dual Row Female Headers	265
CB76	2.00(.079")	Dual Row Female Headers	266
CB33	2.54(.100")	Single Row Dual Entry Female Headers	267
CB37	2.54(.100")	Single Row Female Headers	267
CB39	2.54(.100")	Single Row Female Headers	268
CB41	2.54(.100")	Dual Row Female Headers	269
CB83	2.54(.100")	Dual Row Female Headers	
CB85	2.54(.100")	Dual Row Female Headers	270
CB96	2.54(.100")	Dual Row Elevated Female Headers	270
CB91	2.54(.100")	Dual Row Female Headers	272
CB94	2.54(.100")	Dual Row Female Headers	CVILU 273
CB97	2.54(.100")	Dual Row Side Entry Female Headers	CviLu 274
CBA7	2.00(.079")	Dual Row Female Headers	274
CGB1	2.00(.070)	Pogo Pin Connectors	275
	ader Connectors		CviLux
CHC3	0.80(.031")	Dual Row SMT Pin Headers	CVILU 277
CHC3 CH07			
CH07	1.00(.039")	Single Row Board Mount Connectors Dual Row Pin Headers	278
CH16 CH01	1.27(.050")	Single Row Pin Headers	278

OVILUX CVILUX CVILUX CVILTABLE OF CONTENT CVILUX CVILUX 🔶 CVILUX ILUX CV

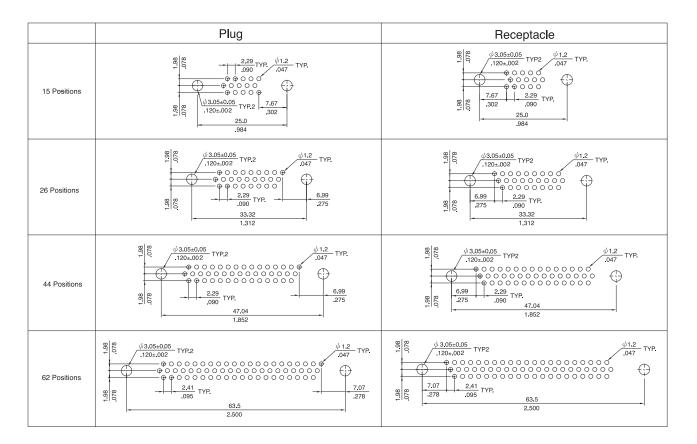
vitux (Cvitux Cvitu	<u>y Cvitux Cvitux Cvitux Cvitux</u>	Cvitux C
CH02	1.27(.050")	Single Row Pin Headers	CviLux 280
CH03	1.27(.050")	Single Row Dual Bodies Pin Headers	281
CH06	1.27(.050")	Straight SMT Dual Row Shrouded Headers	282
CH51	1.27(.050")	Dual Row Pin Headers	283
CH52	1.27(.050")	Dual Row Pin Headers	CVILUX ₂₈₅
CH57	1.27(.050")	Dual Row Dual Bodies Pin Headers	CVILUX 287
CHC2	1.27(.050")	Dual Row Pin Headers	288
CH60	1.27*1.27mm	Right Angle Dual row board mount pin header	291
CH11	2.00(.079")	Single Row SMT Pin Headers	292
CH21	2.00(.079")	Single Row Dual Bodies Pin Headers	CVILUX 294
CH70	2.00(.079")	Straight SMT Dual Row Shrouded Headers	CVILUX 295
CH71	2.00(.079")	Dual Row SMT Pin Headers	Cvil 295
vilux (2.00(.079")	Dual Row Pin Headers	296
CH72	2.00(.079")	Dual Row Pin Headers	297
CH74	2.00(.079")	Dual Row Pin Headers	298
CH75	2.00(.079")	Dual Row Dual Bodies Pin Headers	CVLUX 299
CH79	2.00(.079")	Dual Row Pin Headers	
CH34	2.54(.100")	Single Row Dual Bodies Pin Headers	302
CH31	2.54(.100")	Single Row Pin Headers	303
CH81	2.54(.100")	Dual Row SMT & DIP Pin Headers	305
CH85	2.54(.100")	Dual Row Dual Bodies Pin Headers	CVILUX306
CH87	2.54(.100")	Box Headers	CviLux 307
CH88	2.54(.100")	Shrouded Box Headers	Cvil
I. Socket	S		Cuilan C
CS76	0.50(.020")	NGFF Connectors	309
CS59	0.80(.031")	Mini PCI 4.0H/2.1H 52pin Connectors	CVLUX ₃₁₀
CS21	1.27(.050")	DIP PLCC Chip Carrier Socket	CviLux311
CS22	1.27(.050")	SMT PLCC Chip Carrier Socket	Cvil 11 313
CS78	1.27(.050")	Board to Board Right Angle DIP Connector	314
CS01	2.54(.100")	Dual Row Multiple Shunts	315
CS07	2.54(.100")	DIP Socket - Machined contacts	CVILUX 316
CS09	2.54(.100")	Single in Line Adapter Strip	CVLUX317
CS10	2.54(.100")	Single in Line SIP Socket	CviLux 317
CS74	Cvilux Cvilu	PCI Express Edge Card Connector	318
CSM1		H=3.3mm/1.5mm Dual Type SIM Card Connectors	319
CSM2	CVILUX CVILU	Micro SIM Card Connectors	320
J. D-SUB	Connectors	x CviLux CviLux CviLux CviLux CviLux	CviLux C
vilux (CviLux CviLu	D-Sub Shell Size & Printed Circuits Board Hole Patterns	Cvilux 321
viLux (CviLux CviLu	High density D-Sub Straight / Right Angle DIP solder PCB hole patterns	CviLux 322
vilux (CviLux CviLu	D-Sub Accessories & PCB Mounting Options	Cvil 323
CD01	Cyilux Cyilu	High Density Solder D-Sub	324
CD03		High Density Straight DIP Solder D-Sub	325
CD05	CVILUX CVILU	High Density Right Angle DIP Solder D-Sub	CVILUX 326
CD51	CviLux CviLu	Solder D-Sub	CVLUX 327
CD52	CviLux CviLu	Crimp Clip D-Sub & Terminal	Cvilux 328
CD53	Cvilux Cvilu	Straight DIP Solder D-Sub	330
CD61		8.10mm Footprint Right Angle DIP Solder D-Sub	331
0000	UNILUX CVILU	8.10mm Footprint EMI Right Angle DIP Solder D-Sub	332
CD62			

Cvilux 🗞 Cvilux Ilux Cvilux Cvi TABLE C

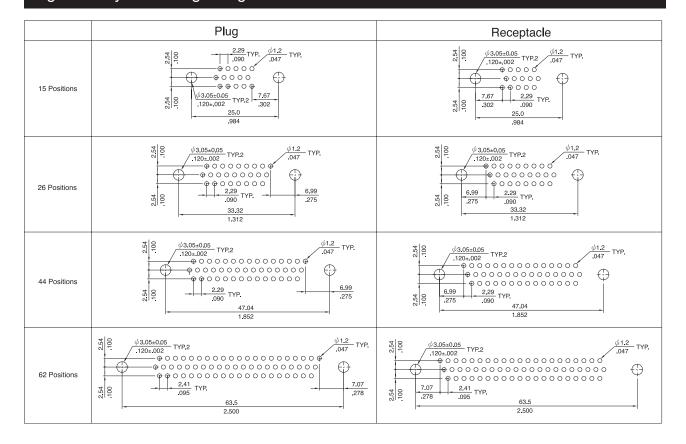
CD71 CVLUX	Machined Contact Solder Cup D-Sub	336
CD72	Machined Contact Straight DIP Solder D-Sub	338
CD73	8.10mm Footprint Right Angle DIP solder D-Sub	340
COMBO D-SUB	Combo D-sub Technical Specfications	342
VILUX CVILUX (Contact Arrangements/ Mounting Style options	343
vilux Cvilux (Coaxial Contact for Combination D-Sub	344
vilux Cvilux (High Power Contact for Combination D-Sub	345
	Combination D-Sub Housing	347
VILUX CVILUX V	Coaxial Straight DIP Combination D-Sub	350
vilux Cvilux (Coaxial Right Angle DIP Combination D-Sub	353
vilux Cvilux (20A High Power Straight DIP Solder Combination D-Sub	356
vilux Cvilux (40A High Power Straight DIP Solder Combination D-Sub	359
viloz Cviloz (20A High Power Right Angle DIP Solder Combination D-Sub	362
VILUX CVILUX (40A High Power Right Angle DIP Solder Combination D-Sub	365
K. Telephone / Mod	ular Jack Connectors	Cvilux (
CJ04 UX CVILUX	Board Mount Telephone Jacks	368
CJ07 IIX CvilIIX (Board Mount Telephone Jacks	
CJ36	Board Mount Telephone Jacks	369
CJ31	Board Mount Telephone Jacks	370
CJ46	Board Mount Telephone Jacks	372
CJ47 UX CVILUX (Board Mount Telephone Jacks	372
CJ58 CVILUX	Board Mount Telephone Jacks	372
CJ48	Board Mount Telephone Jacks	373
CJ59	Board Mount Telephone Jacks	374
CJ91	Board Mount Telephone Jacks	375
CJ97 UX CVILUX (Board Mount Telephone Jacks	376
CJP1UX CVILUX (Telephone Modular Plugs	378
CJP2	Telephone Modular Plugs	379
CJB1	Telephone Modular Jack RJ45	380
CJCJ	Telephone Modular Jack RJ45	381
L. I/O Connectors	CVILUX CVILUX CVILUX CVILUX CVILUX CVILUX CVILUX	CviLux (
	USB 2.0 Type-A Board Mount Receptacle and SMT Plug Connectors	CVILUX ₃₈₂
VILUX CVILUX (USB 2.0 Type-A Receptacle Connectors	383
CU02 X CVILUX (USB 2.0 Type-B Receptacle Connectors	384
CU04	Mini USB2.0 5 Circuits Receptacle SMT/DIP Connectors	385
CU09	Micro USB 2.0 Connectors	386
CU05	IEEE 1394 Shielded I/O Receptacle Connectors	387
CU11 CVILUX	HDMI Receptacle Connectors	388
USB-C CVLUX	USB TYPE C Technical Specifications	389
CU30 CVILUX	USB3.1 Tpye C Plug SMT Type Connectors	391
CU31	USB Tpye C Socket SMT Type Connectors	398
CU32	USB2.0 Tpye C Female SMT Type Connector	400
CU33	USB2.0 Tpye C Female Vertical Type Connectors	A11
vilux Cvilux (USB2.0 Tpye C Plug SMT Type Connectors	VILU) 414
CU34 CVILUX	USB2.0 Tpye C SMT Type Connectors	VILU 415
CU35	USB2.0 Type C Female Connectors	416
CU39	USB2.0 Type C Female Connectors	417
المعيدانيد المعيدانيد	Cyling Cyling Cyling Cyling Cyling	- Arthur and - C


CviLux Cv

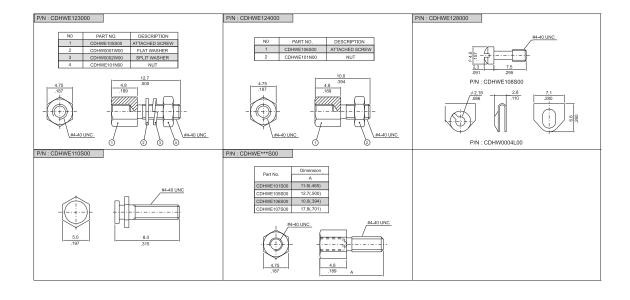
D-Sub Shell Size


D-SUB CONNECTOR	HIGH DENSITY D-SUB CONNECTOR		SHELL SIZE
9 Positions	15 Positions	Ε	$\begin{array}{c} 30.8 \\ 1.213 \\ \hline 25.0 \\ \hline 984 \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\$
15 Positions	26 Positions	А	39.2 1.543 33.32 1.312 0 1.312 0 1.312 0 1.312 0 1.312 0 1.312 0 1.56
25 Positions	44 Positions	В	53.1 2.091 47.04 1.852
37 Positions	62 Positions	С	69.4 2.732 63.5 2.50 0 51 66 51 66 51 66 51 66 51 66 51 66 51 66 51 51 66 51 51 51 51 51 51 51 51 51 51 51 51 51
50 Positions	78 Positions	D	$ \begin{array}{c} 67.0 \\ 2.638 \\ \hline 61.0 \\ \hline 2.402 \\ \hline \hline$

D-Sub Printed Circuits Board Hole Patterns



High Density D-Sub Straight DIP Solder Printed Circuits Board Hole Patterns



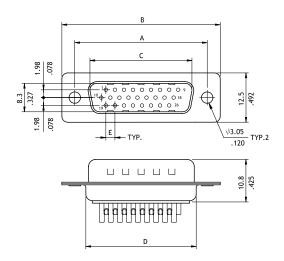
High Density D-Sub Right Angle DIP Solder Printed Circuits Board Hole Patterns

D-Sub Accessories

D-Sub PCB Mounting Options

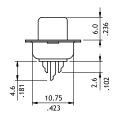
0	Riveted front and rear shell	C Riveted #4-40 UNC open nuts	D Riveted #4-40 UNC close ground	d stand-off on rear shell
	with ψ3.05mm Hole	on rear shell		
		DIM. L= 4.0mm (Standard)		
			Stamped contact	Machined contact
	5 [] -		(DIM. L= 6.0 mm)	(DIM. L= 7.4 mm)
A		F Riveted around books		· · · · · ·
	Riveted #4-40 UNC close nuts on front shell	F Riveted ground hooks with #4-40 UNC open	Riveted ground tabs with #4-40 L	JNC open
	DIM. L= 5.8mm (Standard)			
	, , , , , , , , , , , , , , , , , , ,			
		Tel T		
			H H H	
			Stamped contact	Machined contact
				<u>machinea contace</u>
B	Riveted #4-40 UNC open nuts	G Riveted ground hooks pre-loaded	J Assembly ground hooks by #4-40	UNC Hex screws
	on front shell	#4-40 UNC Hex screws		<u>^</u>
	DIM. L= 4.0mm (Standard)			
		I II I	Jerry and the second se	
	U		Stamped contact	Machined contact
L		l	1	

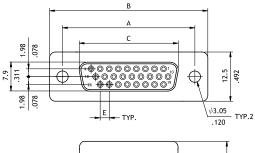
RoHS_{Compliant}

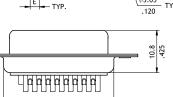

CD01 Series High Density Solder D-Sub

٩ľ

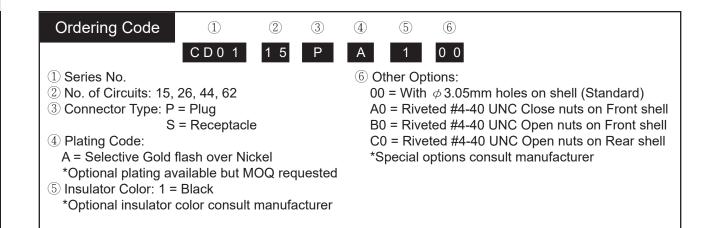
- \odot Mate with high density D-Sub
- With metal shell and solder contacts
- O Riveted Hex nuts options available





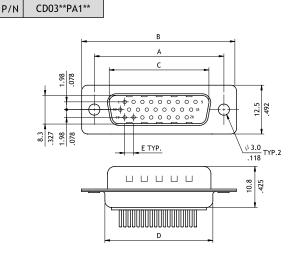

Plug Connector

Circuits	Dimension						
circuits	А	В	С	D	Е		
15	25.0(.984)	30.8(1.213)	16.92(.666)	19.3(.760)	2.29(.090)		
26	33.32(1.312)	39.2(1.543)	25.25(.994)	27.7(1.091)	2.29(.090)		
44	47.04(1.852)	53.1(2.091)	38.96(1.534)	41.1(1.618)	2.29(.090)		
62	63.5(2.500)	69.4(2.732)	55.42(2.182)	57.3(2.256)	2.41(.095)		

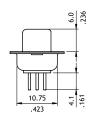

D

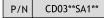
Receptacle connector

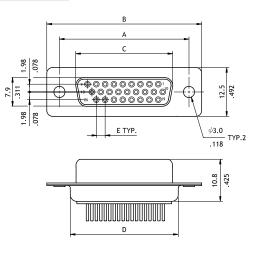
Circuits	Dimension						
circuits	А	В	с	D	E		
15	25.0(.984)	30.8(1.213)	16.3(.642)	19.2(.756)	2.29(.090)		
26	33.32(1.312)	39.2(1.543)	24.6(.969)	27.7(1.091)	2.29(.090)		
44	47.04(1.852)	53.1(2.091)	38.3(1.508)	41.1(1.618)	2.29(.090)		
62	63.5(2.500)	69.4(2.732)	54.8(2.157)	57.3(2.256)	2.41(0.95)		



CD03 Series High Density Straight DIP Solder D-Sub

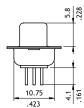

- O Mate with high density D-Sub
- $\ensuremath{\bigcirc}$ With metal shell and solder contacts
- \odot Optional riveted Hex nuts or ground stand-off

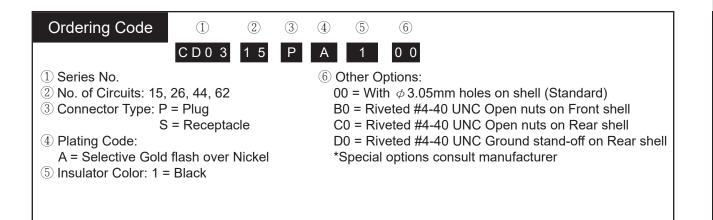




Plug Connector

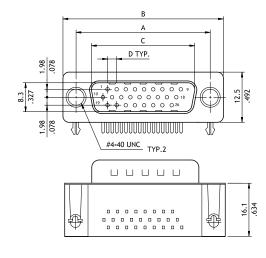
Circuits			Dimension		
Circuits	А	В	с	D	E
15	25.0(.984)	30.8(1.213)	16.92(.666)	19.2(.756)	2.29(.090)
26	33.32(1.312)	39.2(1.543)	25.25(.994)	27.7(1.091)	2.29(.090)
44	47.04(1.852)	53.1(2.091)	38.96(1.534)	41.1(1.618)	2.29(.090)
62	63.5(2.500)	69.4(2.732)	55.42(2.182)	57.3(2.256)	2.41(.095)





Receptacle connector

Circuits	Dimension				
circuits	А	В	С	D	E
15	25.0(.984)	30.8(1.213)	16.3(.642)	19.2(.756)	2.29(.090)
26	33.32(1.312)	39.2(1.543)	24.6(.969)	27.7(1.091)	2.29(.090)
44	47.04(1.852)	53.1(2.091)	38.3(1.508)	41.1(1.618)	2.29(.090)
62	63.5(2.500)	69.4(2.732)	54.8(2.157)	57.3(2.256)	2.41(.095)


CD05 Series High Density Right Angle DIP Solder D-Sub

- O Mate with high density D-Sub
- With metal shell and solder contacts
- O Riveted ground hooks or tab options

Plug Connector

Circuits				
Circuits	А	В	С	D
15	25.0(.984)	30.8(1.213)	16.92(.666)	2.29(.090)
26	33.32(1.312)	39.2(1.543)	25.25(.994)	2.29(.090)
44	47.04(1.852)	53.1(2.091)	38.96(1.534)	2.29(.090)

Dimension

С

16.3(.642)

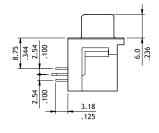
24.6(.969)

38.3(1.508)

В

30.8(1.213)

39.2(1.543)


53.1(2.091)

D

2.29(.090)

2.29(.090)

2.29(.090)

Receptacle connector

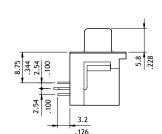
Α

25.0(.984)

33.32(1.312)

47.04(1.852)

Circuits


15

26

44

В

A

 Ordering Code
 1
 2
 3
 4
 5
 6

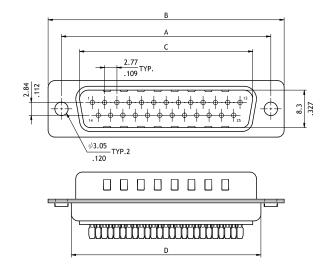
 C D 0 5
 1 5
 P
 2
 1
 F 0

舟

① Series No.

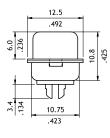
- 2 No. of Circuits: 15, 26, 44
- ③ Connector Type: P = Plug , S = Receptacle
- ④ Plating Code:
 - 2 = Gold flash over Nickel
 - A = Selective Gold flash over Nickel

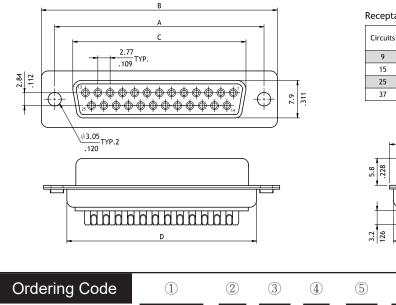
€


- *Optional plating available but MOQ requested ⑤ Insulator Color: 1 = Black
 - *Optional insulator color consult manufacturer
- 6 Other Options:
 - F0 = Riveted ground hooks with #4-40 UNC Open (Standard) I0 = Riveted ground tabs thread #4-40 UNC Open and
 - ground tabs with ϕ 3.2mm holes
 - J0 = Assmebly ground hooks by #4-40 UNC Hex screws G0 = Riveted ground hooks pre-loaded #4-40 UNC Hex screws *Special options consult manufacturer

CD51 Series Solder D-Sub

- O Mate with standard D-Sub
- With metal shell and solder contacts
- O Riveted Hex nuts options available





Plug Connector

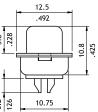
Circuits	Dimension				
Circuits	А	В	С	D	
9	25.0(.984)	30.8(1.213)	16.92(.666)	19.2(.756)	
15	33.32(1.312)	39.2(1.543)	25.25(.994)	27.7(1.091)	
25	47.04(1.852)	53.1(2.091)	38.96(1.534)	41.1(1.618)	
37	63.5(2.500)	69.4(2.732)	55.42(2.182)	57.3(2.256)	

CD

1) Series No.

- 2 No. of Circuits : 09, 15, 25, 37
- ③ Connector Type: P = Plug S = Receptacle
- ④ Plating Code : A = Selective Gold flash over Nickel *Optional plating available but MOQ requested

C D 5 1


25

Ρ

А

5 Insulator Color: 1 = Black *Optional insulator color consult manufacturer Receptacle connector

	Circuits	Dimension				
Circuits	А	В	С	D		
	9	25.0(.984)	30.8(1.213)	16.3(.642)	19.2(.756)	
	15	33.32(1.312)	39.2(1.543)	24.6(.969)	27.7(1.091)	
	25	47.04(1.852)	53.1(2.091)	38.3(1.508)	41.1(1.618)	
	37	63.5(2.500)	69.4(2.732)	54.8(2.157)	57.3(2.256)	

6

0 0

6 Other Options:

1

00 = With ϕ 3.05mm holes on shell (Standard) A0 = Riveted #4-40 UNC Close nuts on Front shell B0 = Riveted #4-40 UNC Open nuts on Front shell C0 = Riveted #4-40 UNC Open nuts on Rear shell *Special options consult manufacturer

CD52 Series Crimp Clip D-Sub

- O Mate with standard D-Sub
- O Riveted Hex nuts options available

Dimension

16.92(.666)

25.25(.994)

38.96(1.534)

55.42(2.182)

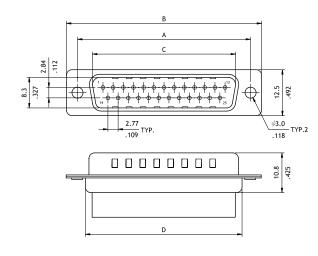
30.8(1.213)

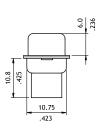
39.2(1.543)

53.1(2.091)

69.4(2.732)

D


19.2(.756)


27.7(1.091)

41.1(1.618)

57.3(2.256)

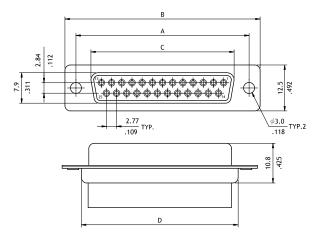
25.0(.984)

33.32(1.312)

47.04(1.852)

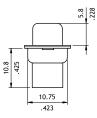
63.5(2.500)

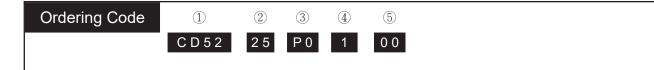
Plug Connector


Circuits

9

15

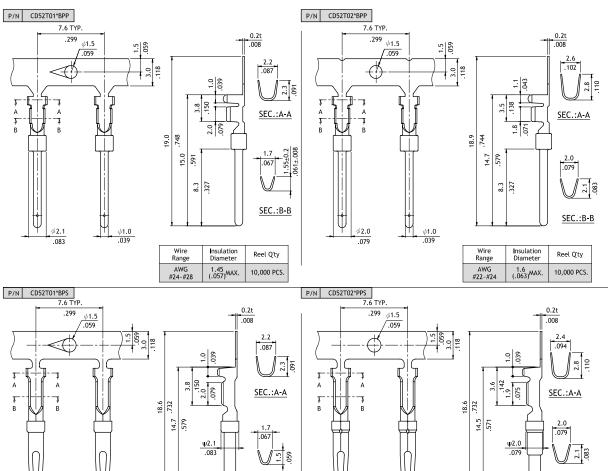

25

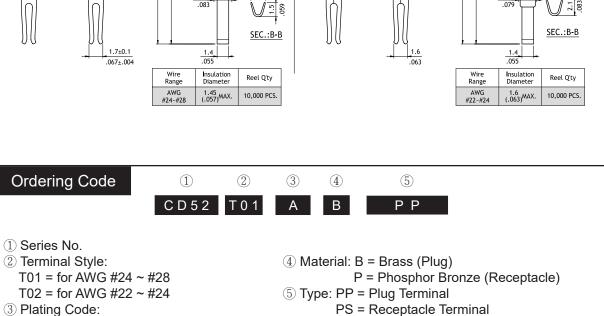

37

Receptacle connector

Circuits				
Circuits	А	В	С	D
9	25.0(.984)	30.8(1.213)	16.3(.642)	19.2(.756)
15	33.32(1.312)	39.2(1.543)	24.6(.969)	27.7(1.091)
25	47.04(1.852)	53.1(2.091)	38.3(1.508)	41.1(1.618)
37	63.5(2.500)	69.4(2.732)	54.8(2.157)	57.3(2.256)

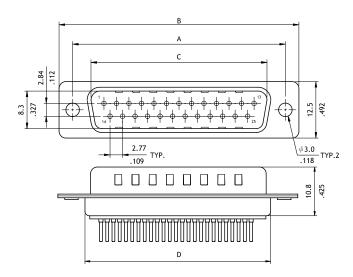
- 1) Series No.
- 2 No. of Circuits: 09, 15, 25, 37
- ③ Connector Type: P0 = Plug
 - S0 = Receptacle
- ④ Insulator Color: 1 = Black *Optional insulator color consult manufacturer
- 5 Other Options:
 - 00 = With ϕ 3.05mm holes on shell (Standard)
 - A0 = Riveted #4-40 UNC Close nuts on Front shell
 - B0 = Riveted #4-40 UNC Open nuts on Front shell C0 = Riveted #4-40 UNC Open nuts on Rear shell


CD52 Series Crimp Clip Terminal


A = Selective Gold flash over Nickel

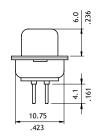
*Optional plating available but MOQ requested

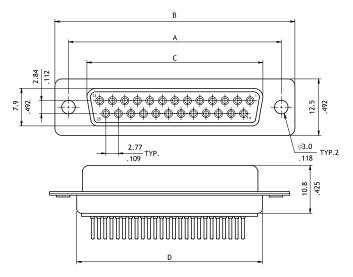
- O Mate with Cvilux CD52 D-Sub
- \odot Low insertion force

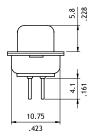


CD53 Series Straight DIP Solder D-Sub

- O Mate with standard D-Sub
- With metal shell and solder contacts
- O Riveted Hex nuts options available



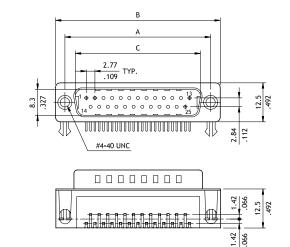


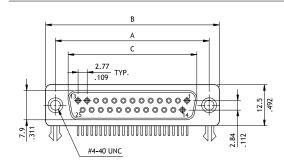

Circuits	Dimension				
Circuits	A	В	С	D	
9	25.0(.984)	30.8(1.213)	16.92(.666)	19.2(.756)	
15	33.32(1.312)	39.2(1.543)	25.25(.994)	27.7(1.091)	
25	47.04(1.852)	53.1(2.091)	38.96(1.534)	41.1(1.618)	
37	63.5(2.500)	69.4(2.732)	55.42(2.182)	57.3(2.256)	

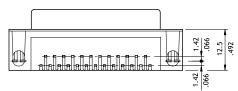
Receptacle connector

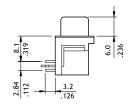
Circuits	Dimension				
	A	В	С	D	
9	25.0(.984)	30.8(1.213)	16.3(.642)	19.2(.756)	
15	33.32(1.312)	39.2(1.543)	24.6(.969)	27.7(1.091)	
25	47.04(1.852)	53.1(2.091)	38.3(1.508)	41.1(1.618)	
37	63.5(2.500)	69.4(2.732)	54.8(2.157)	57.3(2.256)	

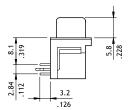
Ordering Code 1 (2) (3) 4 (5) 6) 0 0 C D 5 3 25 Р 2 1 1) Series No. 5 Insulator Color: 1 = Black 2 No. of Circuits: 09, 15, 25, 37 *Optional insulator color consult manufacturer ③ Connector Type: 6 Other Options: P = Plug (Male) S = Receptacle (Female) 00 = With ϕ 3.05mm holes on shell (Standard) ④ Plating Code: B0 = Riveted #4-40 UNC Open nuts on Front shell 2 = Gold flash over Nickel C0 = Riveted #4-40 UNC Open nuts on Rear shell A = Selective Gold flash over Nickel D0 = Riveted #4-40 UNC Ground stand-off on Rear shell *Optional plating available but MOQ requested *Special options consult manufacturer

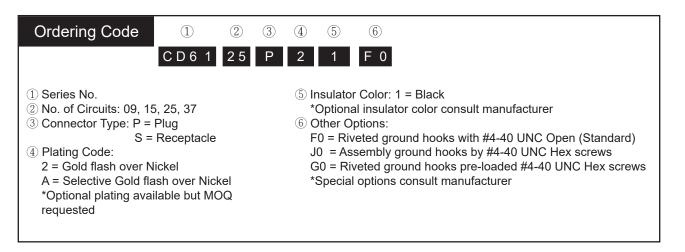

😪 CviLux


CD61 Series 8.10mm Footprint Right Angle DIP Solder D-Sub


- O Mate with standard D-Sub
- With metal shell and solder contacts
- ◎ Ground hooks or ground tabs available






Cinnette		Dimension	
Circuits	A	В	С
9	25.0(.984)	30.8(1.213)	16.92(.666)
15	33.32(1.312)	39.2(1.543)	25.25(.994)
25	47.04(1.852)	53.1(2.091)	38.96(1.534)
37	63.5(2.500)	69.4(2.732)	55.42(2.182)

Receptacle connector

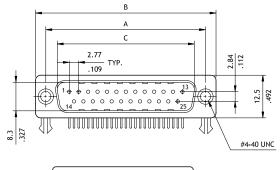
Circuits	Dimension		
Circuits	A	В	с
9	25.0(.984)	30.8(1.213)	16.3(.642)
15	33.32(1.312)	39.2(1.543)	24.6(.969)
25	47.04(1.852)	53.1(2.091)	38.3(1.508)
37	63.5(2.500)	69.4(2.732)	54.8(2.157)

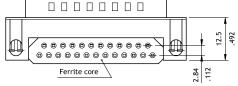
CD62 Series 8.10mm Footprint EMI Right Angle DIP Solder D-Sub

2.84

셴

12.5 492


#4-40 UNC


12.5 492

2.84

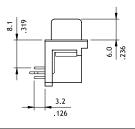
- O Mate with standard D-Sub
- With ferrite core
- Optional ground hooks or ground tabs

в A

С

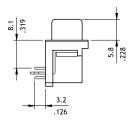
³♦♦००००००००००**♦**

0000000000000


Ferrite core

TYP. .109

2.77


Plug Connector

-			
Circuits		Dimension	
Circuits	A	В	С
9	25.0(.984)	30.8(1.213)	16.92(.666)
15	33.32(1.312)	39.2(1.543)	25.25(.994)
25	47.04(1.852)	53.1(2.087)	38.96(1.534)
37	63.5(2.500)	69.4(2.732)	55.42(2.182)

Receptacle connector

Circuits	Dimension				
Circuits	А	В	с		
9	25.0(.984)	30.8(1.213)	16.3(.642)		
15	33.32(1.312)	39.2(1.543)	24.6(.969)		
25	47.04(1.852)	53.1(2.091)	38.3(1.508)		
37	63.5(2.500)	69.4(2.732)	54.8(2.157)		

① Series No.

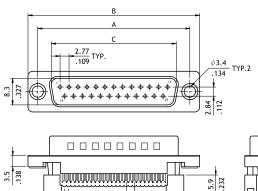
311

Ш

- ² No. of Circuits: 09, 15, 25, 37
- ③ Connector Type: P = Plug S = Receptacle
- ④ Plating Code: 2 = Gold flash over Nickel *Optional plating available but MOQ requested
- 5 Insulator Color: 1 = Black

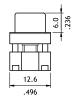
- 6 Other Options:
 - F0 = Riveted ground hooks with #4-40 UNC Open (Standard) 10 =Riveted ground tabs thread #4-40 UNC Open
 - and ground tabs with ϕ 3.2mm holes
 - J0 = Assembly ground hooks by #4-40 UNC Hex screws
 - G0 =Riveted ground hooks pre-loaded #4-40 UNC
 - Hex screws *Special options consult manufacturer

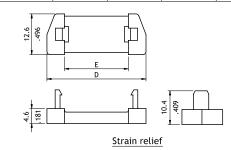
D-SUB CONNECTORS

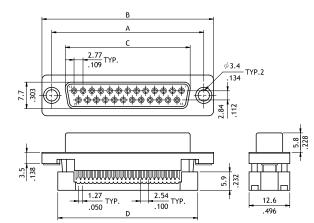

😪 CviLux

CD91 Series Flat Cable - IDC D-Sub

- Mate with standard D-Sub and CW03
- © Flat Ribbon Cable
- © ø3.4mm holes or riveted insert nuts available

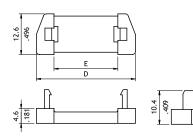





1.27 .050 TYP.

D

Plug Connector									
Circuits	Dimension								
	А	В	С	D	E				
9	25.0(.984)	30.8(1.213)	16.92(.666)	22.4(.882)	12.08(.476)				
15	33.3(1.311)	39.2(1.543)	25.25(.994)	30.8(1.213)	19.7(.776)				
25	47.1(1.854)	53.1(2.091)	38.96(1.534)	44.5(1.752)	32.4(1.276)				
37	63.5(2.500)	69.4(2.732)	55.42(2.182)	61.4(2.417)	47.72(1.879)				



2.54 .100 TYP.

Receptacle connector

Circuits	Dimension					
	А	В	С	D	E	
9	25.0(.984)	30.8(1.213)	16.3(.642)	22.4(.882)	12.08(.476)	
15	33.3(1.311)	39.2(1.543)	24.6(.969)	30.8(1.213)	19.7(.776)	
25	47.1(1.854)	53.1(2.091)	38.3(1.508)	44.5(1.752)	32.4(1.276)	
37	63.5(2.500)	69.4(2.732)	54.8(2.157)	61.4(2.417)	47.72(1.879)	

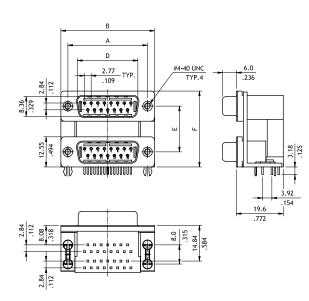
Strain relief

① Series No.

- ² No. of Circuits: 09, 15, 25, 37
- ③ Connector Type: P = Plug
 - S = Receptacle
- ④ Plating Code :A = Selective Gold flash over Nickel *Optional plating available but MOQ requested (5) Insulator Color: 1 = Black

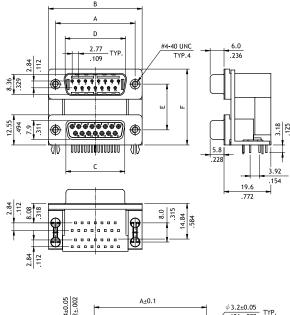
7 = Blue

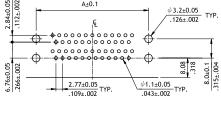
- 6 Other Options:
 - S0 = Metal shell with ϕ 3.4mm holes with S/R (Standard) S1 = Metal shell #4-40 UNC insert nuts with S/R *Special options consult manufacturer

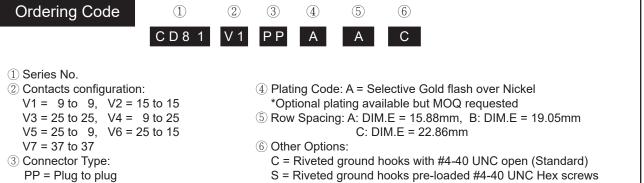


CD81 Series Stacked Right Angle DIP Solder D-Sub

- O Mate with standard D-Sub
- O With metal shell and solder tails
- Optional row spacing and position
- ◎ In various pin configuration

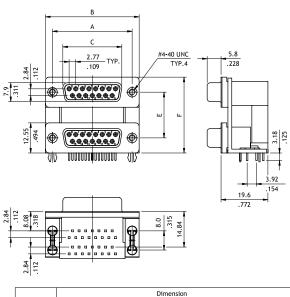


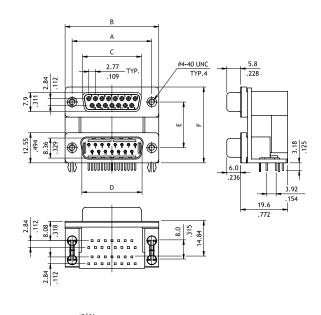



CVILUX P/N	Dimension						
	A	В	D	E	F		
CD81V1P**A*	24.99(.984)	30.81(1.213)	16.92(.666)		28.43(1.119)		
CD81V2P**A*	33.32(1.312)	39.19(1.543)	25.25(.994)	15.88(.625)			
CD81V3P**A*	47.04(1.852)	53.04(2.088)	38.96(1.534)	15.88(.025)			
CD81V7P**A*	63.50(2.500)	69.32(2.729)	55.42(2.182)				
CD81V1P**B*	24.99(.984)	30.81(1.213)	16.92(.666)		31.60(1.244)		
CD81V2P**B*	33.32(1.312)	39.19(1.543)	25.25(.994)	19.05(.750)			
CD81V3P**B*	47.04(1.852)	53.04(2.088)	38.96(1.534)	19.03(.730)			
CD81V7P**B*	63.50(2.500)	69.32(2.729)	55.42(2.182)				
CD81V1P**C*	24.99(.984)	30.81(1.213)	16.92(.666)				
CD81V2P**C*	33.32(1.312)	39.19(1.543)	25.25(.994)	22.86(.900)	35.41(1.394)		
CD81V3P**C*	47.04(1.852)	53.04(2.088)	38.96(1.534)	22.00(.900)			
CD81V7P**C*	63.50(2.500)	69.32(2.729)	55.42(2.182)				

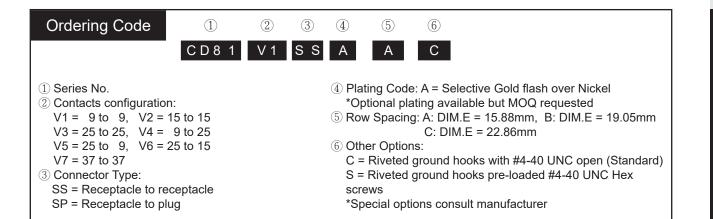
PS = Plug to receptacle

Recommended PCB Layout


S = Riveted ground hooks pre-loaded #4-40 UNC Hex screws *Special options consult manufacturer

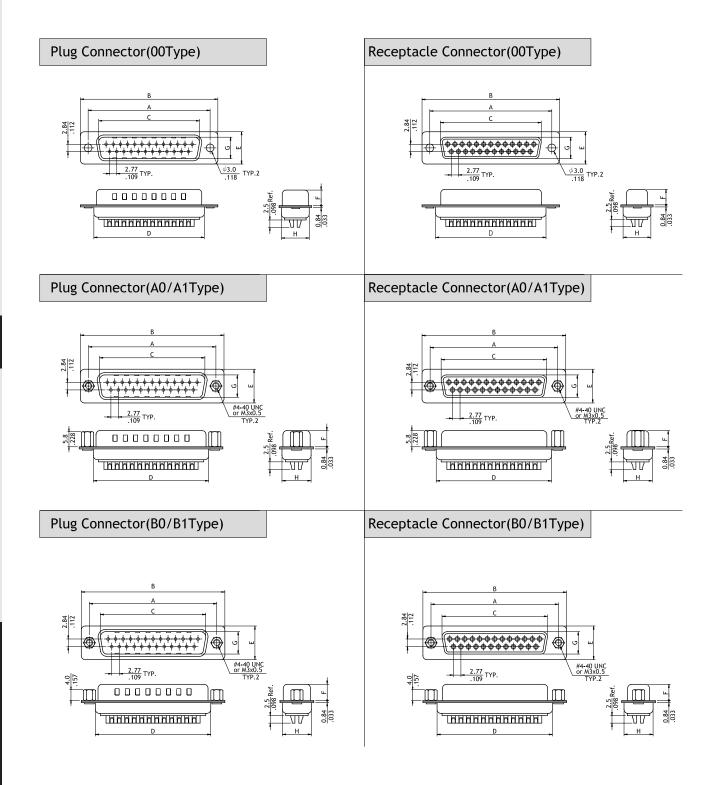

CD81 Series Stacked Right Angle DIP Solder D-Sub

- O Mate with standard D-Sub
- \odot With metal shell and solder tails
- \odot Optional row spacing and position
- \odot In various pin configuration

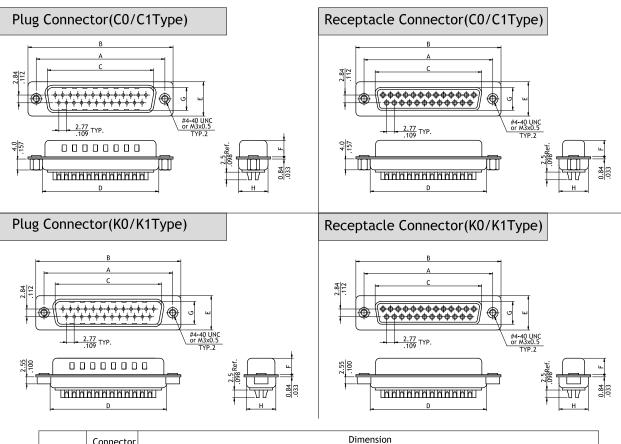


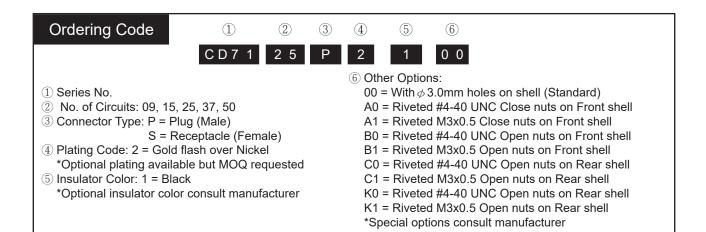
CVILUX P/N			ISION				
CVILUX P/N	A	B C D		D	E	F	
CD81V1SS*A*	24.99(.984)	30.81(1.213)	16.33(.643)	16.92(.666)			
CD81V2SS*A*	33.32(1.312)	39.19(1.543)	24.66(.971)	25.25(.994)	15.88(.625)	28.43(1.119)	
CD81V3SS*A*	47.04(1.852)	53.04(2.088)	38.38(1.511)	38.96(1.534)	15.00(.025)	20.45(1.117)	
CD81V7SS*A*	63.50(2.500)	69.32(2.729)	54.84(2.159)	55.42(2.182)			
CD81V1SS*B*	24.99(.984)	30.81(1.213)	16.33(.643)	16.92(.666)		31.60(1.244)	
CD81V2SS*B*	33.32(1.312)	39.19(1.543)	24.66(.971)	25.25(.994)	19.05(.750)		
CD81V3SS*B*	47.04(1.852)	53.04(2.088)	38.38(1.511)	38.96(1.534)	17.05(.750)		
CD81V7SS*B*	63.50(2.500)	69.32(2.729)	54.84(2.159)	55.42(2.182)			
CD81V1SS*C*	24.99(.984)	30.81(1.213)	16.33(.643)	16.92(.666)			
CD81V2SS*C*	33.32(1.312)	39.19(1.543)	24.66(.971)	25.25(.994)	22.86(.900)	35.41(1.394)	
CD81V3SS*C*	47.04(1.852)	53.04(2.088)	38.38(1.511)	38.96(1.534)	22.00(.900)	55.71(1.374)	
CD81V7SS*C*	63.50(2.500)	69.32(2.729)	54.84(2.159)	55.42(2.182)			

Recommended PCB Layout



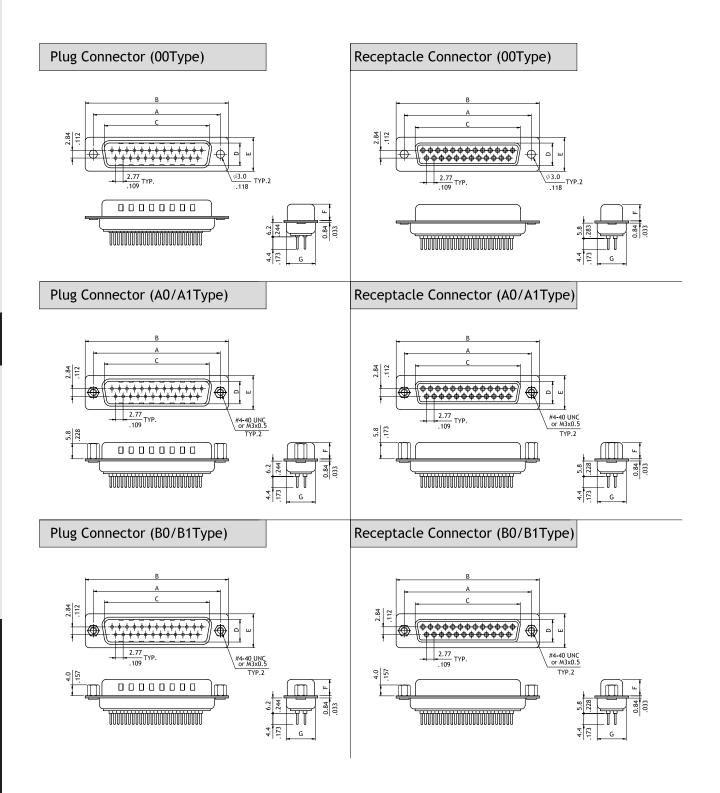
CD71 Series Machined Contact Solder Cup D-Sub


- ◎ Mate with standard D-Sub
- \odot With metal shell and solder tails
- \odot Riveted Hex nuts or hardware accessories options available



CD71 Series Machined Contact Solder Cup D-Sub

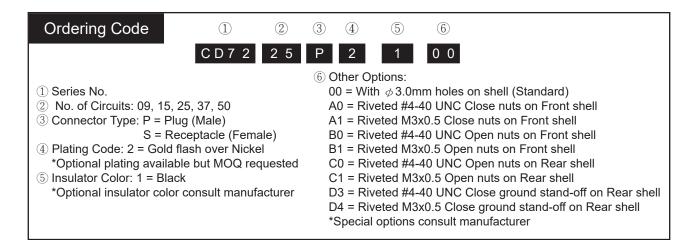
Circuits	Connector		Dimension								
Circuits	Туре	А	В	С	D	Е	F	G	Н		
9	Plug	25.0(.984)	30.8(1.213)	16.92(.666)	19.2(.756)	12.5(.492)	6.0(.236)	8.3(.327)	10.75(.423)		
	Receptacle	25.0(.984)	30.8(1.213)	16.30(.642)	19.2(.756)	12.5(.492)	5.8(.228)	7.9(.311)	10.75(.423)		
15	Plug	33.32(1.312)	39.2(1.543)	25.25(.994)	27.6(1.087)	12.5(.492)	6.0(.236)	8.3(.327)	10.75(.423)		
	Receptacle	33.32(1.312)	39.2(1.543)	24.6(.969)	27.6(1.087)	12.5(.492)	5.8(.228)	7.9(.311)	10.75(.423)		
25	Plug	47.04(1.852)	53.1(2.091)	38.96(1.534)	41.1(1.618)	12.5(.492)	6.0(.236)	8.3(.327)	10.75(.423)		
25	Receptacle	47.04(1.852)	53.1(2.091)	38.3(1.508)	41.1(1.618)	12.5(.492)	5.8(.228)	7.9(.311)	10.75(.423)		
37	Plug	63.5(2.500)	69.4(2.732)	55.42(2.182)	57.3(2.256)	12.5(.492)	6.0(.236)	8.3(.327)	10.75(.423)		
3/	Receptacle	63.5(2.500)	69.4(2.732)	54.80(2.157)	57.3(2.256)	12.5(.492)	5.8(.228)	7.9(.311)	10.75(.423)		
50	Plug	61.0(2.242)	69.4(2.732)	52.81(2.079)	55.0(2.169)	15.3(.602)	6.0(.236)	11.1(.473)	13.35(.526)		
50	Receptacle	61.0(2.242)	69.4(2.732)	52.2(2.055)	55.0(2.169)	15.3(.602)	5.8(.228)	10.9(.429)	13.35(.526)		



CD72 Series Machined Contact Straight DIP Solder D-Sub

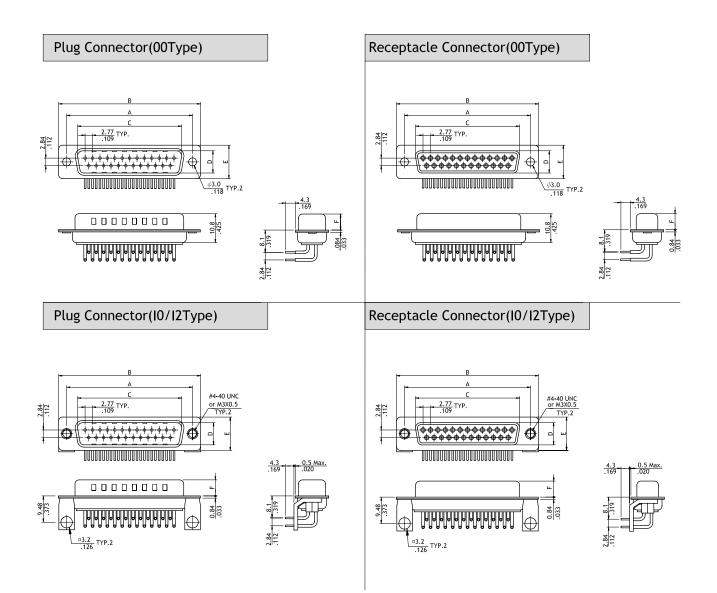
- ◎ Mate with standard D-Sub
- \odot With metal shell and solder tails
- \odot Riveted Hex nuts or hardware accessories options available

RoHS_{compliant} 🔊

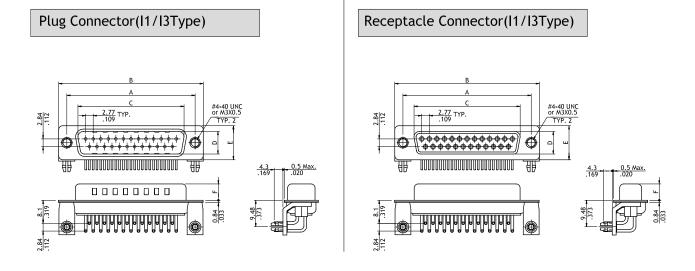


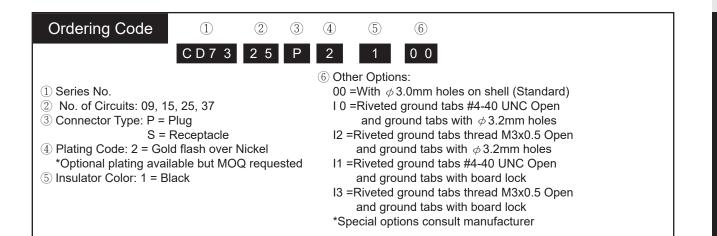
CD72 Series Machined Contact Straight DIP Solder D-Sub

Circuits	Connector				Dimension			
Circuits	Туре	А	В	С	D	E	F	G
9	Plug	25.0(.984)	30.8(1.213)	16.92(.666)	8.3(.327)	12.5(.492)	6.0(.236)	10.75(.423)
9	Receptacle	25.0(.984)	30.8(1.213)	16.3(.642)	7.9(.311)	12.5(.492)	5.8(.228)	10.75(.423)
45	Plug	33.32(1.312)	39.2(1.543)	25.25(.994)	8.3(.327)	12.5(.492)	6.0(.236)	10.75(.423)
15	Receptacle	33.32(1.312)	39.2(1.543)	24.6(.969)	7.9(.311)	12.5(.492)	5.8(.228)	10.75(.423)
25	Plug	47.04(1.852)	53.1(2.091)	38.96(1.534)	8.3(.327)	12.5(.492)	6.0(.236)	10.75(.423)
25	Receptacle	47.04(1.852)	53.1(2.091)	38.3(1.508)	7.9(.311)	12.5(.492)	5.8(.228)	10.75(.423)
37	Plug	63.5(2.500)	69.4(2.732)	55.42(2.182)	8.3(.327)	12.5(.492)	6.0(.236)	10.75(.423)
37	Receptacle	63.5(2.500)	69.4(2.732)	54.8(2.157)	7.9(.311)	12.5(.492)	5.8(.228)	10.75(.423)
50	Plug	61.0(2.402)	67.0(2.638)	52.8(2.079)	11.1(.473)	15.3(.602)	6.0(.236)	13.35(.526)
50	Receptacle	61.0(2.402)	67.0(2.638)	52.2(2.055)	10.9(.429)	15.3(.602)	5.8(.228)	13.55(.526)



CD73 Series 8.10mm Footprint Right Angle DIP Solder D-Sub


- O Machined contact with right angle solder tails
- \odot Mate with standard D-Sub
- \bigcirc Metal shell and solder tails
- \odot Riveted Hex nuts or hardware accessories options available



CD73 Series 8.10mm Footprint Right Angle DIP Solder D-Sub

Circuits	Connector		Dimension								
	Туре	А	В	С	D	E	F				
9	Plug	25.0(.984)	30.8(1.213)	16.92(.666)	8.3(.327)	12.5(.492)	6.0(.236)				
	Receptacle	25.0(.984)	30.8(1.213)	16.3(.642)	7.9(.311)	12.5(.492)	5.8(.228)				
	Plug	33.32(1.312)	39.2(1.543)	25.25(.994)	8.3(.327)	12.5(.492)	6.0(.236)				
15	Receptacle	33.32(1.312)	39.2(1.543)	24.6(.969)	7.9(.311)	12.5(.492)	5.8(.228)				
25	Plug	47.04(1.852)	53.1(2.091)	38.96(1.534)	8.3(.327)	12.5(.492)	6.0(.236)				
25	Receptacle	47.04(1.852)	53.1(2.091)	38.3(1.508)	7.9(.311)	12.5(.492)	5.8(.228)				
37	Plug	63.5(2.500)	69.4(2.732)	55.42(2.182)	8.3(.327)	12.5(.492)	6.0(.236)				
	Receptacle	63.5(2.500)	69.4(2.732)	54.8(2.157)	7.9(.311)	12.5(.492)	5.8(.228)				

Combo D-Sub Technical Specifications

- \odot The connectors conform to MIL-24308(DIN 41652) cad the shell dimensions are the same as standard D-sub connectors so that mating is no problem
- Test methods for electronic connector are according to MILITARY standard MIL-STD-1344A and MILSTD-202F

Construction

Connector Assemblies -

- Shell : Steel, Tin Plated as Standard
- Insulator : Glass filled polyester UL 94V-0
 Color Black or Green
- Signal Contact when applicable : Copper alloy : Please see ordering code for plating options
- Standoff : Copper alloy, Tin over Copper
- Bracket : Steel, Nickel plated
- Rivnut : Copper alloy, Nickel plated
- Locking Clipper : Copper alloy, Tin over Copper

Coaxial Contact Assembly -

- Insulator : Teflon UL 94V-0, Color White
- Center and outside contact : Copper alloy Please see ordering code for plating options
- Lock link : Copper alloy, Tin plated over Nickel

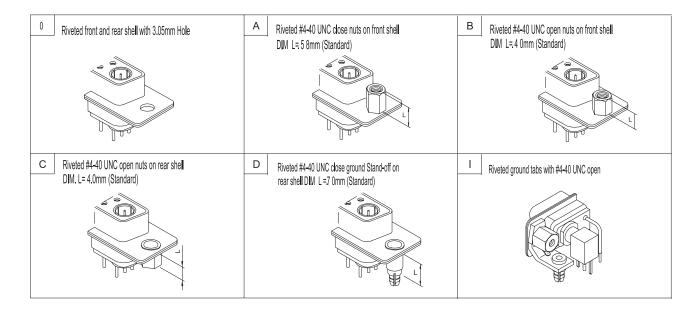
High Power Contact Assembly -

- Contact : Copper alloy
 Please see ordering code for plating options
- Lock link : Copper alloy, Tin plated over Nickel

Performance Data

- Signal contact current rating : 3 Amps
- Signal contact resistance : < 10 m Ω
- Dielectric withstanding Voltage: 1000VAC for one minute at sea level
- Insulation Resistance : > 5000 $M\Omega$
- Coaxial Contact impedance : 75Ω or 50Ω
- High power contact current rating : 40 or 20 Amps
- High power contact Resistance : < 2.7 m
- Connector mating and unmating force:17.0 kgf max.
- Durability:100 Cycles
- Operating Temperature: -55°~+125°C

CD

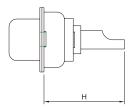


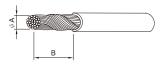
Contact Arrangements

- O Accommodated removable Coaxial and high power contacts
- ◎ The product indicated" ◆" Not available at present

· .	-		•				
			$\left(\begin{array}{c} A1 & 1 & 2 & A2 \\ 0 & 0 & 0 & 0 \\ 3 & 4 & 5 \end{array} \right) \left(\begin{array}{c} A1 & 1 & 2 & A2 \\ 0 & 0 & 0 & 0 \\ 3 & 4 & 5 \end{array} \right) \left(\begin{array}{c} A1 & A2 & A2 \\ A1 & A2 & A2 \\ A2 & A2 & A2 \\ A3 & A3 & A3 \\ A4 & A3 & A4 \\ A4 & A4 & A4 \\ A4 & A4 & A4 \\ A4 & A4 &$	$ \begin{array}{c} 1 & 2 & 3 & 0 & 1 \\ 0 & 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 7 & 8 & 0 & 0 & 0 \\ \end{array} $			$\left(\begin{array}{c} 2 & A_{3} \\ 0 & 0 \\ 0 & 0 \end{array}\right)$
Contact Arrangement	5W1	3W3	7W2	11W1	5W5	9W4	
Shell Size	E	А	А	А	В	В	
No. of Signal Contacts	4	0	5	10	0	5	
No. of Coaxial Contacts	1	3	2	1	5	4	
		$ \xrightarrow{\begin{array}{c} 0 \\ 0 \\ 8 \end{array}} \xrightarrow{\begin{array}{c} 0 \\ 7 \end{array}} \xrightarrow{\begin{array}{c} 0 \\ 0 \\ 8 \end{array}} \xrightarrow{\begin{array}{c} 0 \\ 7 \end{array}} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ \end{array} \xrightarrow{\begin{array}{c} 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \end{array} \xrightarrow{\begin{array}{c} 0 \\ 0 \end{array} \xrightarrow{\begin{array}{c} 0 \end{array} \end{array}$ }	$\left(\begin{smallmatrix} A1 & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & A2 \\ & & & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ & & 0 & 0$	$ \begin{array}{c} 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	A1 6 7 8 9 10 0 0 0 0 0 16 17 18 19 20	A1 A2 A3 A4 A5 A6 A	A7 A8
Contact Arrangement	13W3	3	17W2		21W1	8W8	
Shell Size	В		В		В	С	
No. of Signal Contacts	10		15		20	0	
No. of Coaxial Contacts	3		2		1	8	
		A4 A5 A6 10	$ \begin{pmatrix} 2 & 3 & 4 \\ 0 & 0 & 0 \\ 6 & 7 \end{pmatrix} $ $ \begin{pmatrix} A1 \\ A2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} $		A5	$ \begin{pmatrix} A_1 & A_2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & A3 \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & & & \\ &$) ^{A4}
Contact Arrangement		13W6		17W5		21W4	
Shell Size		С		С		С	
No. of Signal Contacts		7		12		17	
No. of Coaxial Contacts		6		5		4	
		3 4 5 6 7 8 9 10 0 0 0 0 0 0 0 0 0 14 15 16 17 16 19 20 21	$ \begin{array}{c} \begin{array}{c} 11 & A3 \\ 0 & 0 \\ 22 \end{array} \end{array} $		$\begin{pmatrix} 12 & 13 & A2 \\ 0 & 0 & 0 \\ 25 & 0 \\ 25 & 0 \\ 25 & 0 \\ 25 & 0 \\ 25 & 0 \\ 0 & 0 \\ 25 & 0 \\ 0$	$\begin{pmatrix} A_1 \\ 0 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	
Contact Arrangement		25W3		27W2		24W7	
Shell Size		С		С		D	
No. of Signal Contacts		22		25		17	
No. of Coaxial Contacts		3		2		7	
	A1 0 0 0 0 0 0 0 0 16 17 18 19 20 21 22	$\begin{array}{c} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 0 & 0 & 0 & 0 & 2 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	$ \begin{array}{c} & 1 & 2 & 3 \\ & 0 & 0 & 0 \\ & 0 & 0 & 0 \\ & 31 & 32 \end{array} $		$ \bigcirc \bigcirc$	$ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 13 & 14 & 15 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	$ \overset{i}{\overset{16}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{$
Contact Arrangement		36W4		43W2		47W1	
Shell Size		D		D		D	
No. of Signal Contacts		32		41		46	
No. of Coaxial Contacts		4		2		1	

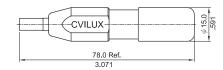
Mounting Style Options


D-SUB CONNECTORS

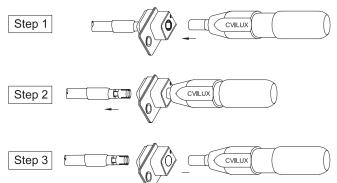

Coaxial	Contact for Combination	D-Sub			
Contact Type	Shape	Part No.	Plating	Impedance	R.G Cable
		CXLTPS27500 CXLTPS37500 CXLTPS47500 CXLTPS57500	Gold flash plated over 50µin Nickel 15µin Gold plated over 50µin Nickel 30µin Gold plated over 50µin Nickel 50µin Gold plated over 50µin Nickel	75Ω	179B/U
Solder		CXLTPS25000 CXLTPS35000 CXLTPS45000 CXLTPS55000	Gold flash plated over 50µin Nickel 15µin Gold plated over 50µin Nickel 30µin Gold plated over 50µin Nickel 50µin Gold plated over 50µin Nickel	50Ω	178B/U
Cup		CXLTSS27500 CXLTSS37500 CXLTSS47500 CXLTSS57500	Gold flash plated over 50µin Nickel 15µin Gold plated over 50µin Nickel 30µin Gold plated over 50µin Nickel 50µin Gold plated over 50µin Nickel	75Ω	179B/U
		CXLTSS25000 CXLTSS35000 CXLTSS45000 CXLTSS55000	Gold flash plated over 50µin Nickel 15µin Gold plated over 50µin Nickel 30µin Gold plated over 50µin Nickel 50µin Gold plated over 50µin Nickel	50Ω	178B/U
	16.95 .667 .226	CXLTPV27500 CXLTPV37500 CXLTPV47500 CXLTPV57500	Gold flash plated over 50µin Nickel 15µin Gold plated over 50µin Nickel 30µin Gold plated over 50µin Nickel 50µin Gold plated over 50µin Nickel	75Ω	
Straight	Plug Contact	CXLTPV25000 CXLTPV35000 CXLTPV45000 CXLTPV55000	Gold flash plated over 50µin Nickel 15µin Gold plated over 50µin Nickel 30µin Gold plated over 50µin Nickel 50µin Gold plated over 50µin Nickel	50Ω	
DIP		CXLTSV27500 CXLTSV37500 CXLTSV47500 CXLTSV57500	Gold flash plated over 50µin Nickel 15µin Gold plated over 50µin Nickel 30µin Gold plated over 50µin Nickel 50µin Gold plated over 50µin Nickel	75Ω	
	Receptacle Contact	CXLTSV25000 CXLTSV35000 CXLTSV45000 CXLTSV55000	Gold flash plated over 50µin Nickel 15µin Gold plated over 50µin Nickel 30µin Gold plated over 50µin Nickel 50µin Gold plated over 50µin Nickel	50Ω	
		CXLTPH27500 CXLTPH37500 CXLTPH47500 CXLTPH57500	Gold flash plated over 50µin Nickel 15µin Gold plated over 50µin Nickel 30µin Gold plated over 50µin Nickel 50µin Gold plated over 50µin Nickel	75Ω	
Right Angle	Plug Contact	CXLTPH25000 CXLTPH35000 CXLTPH45000 CXLTPH55000	Gold flash plated over 50µin Nickel 15µin Gold plated over 50µin Nickel 30µin Gold plated over 50µin Nickel 50µin Gold plated over 50µin Nickel	50Ω	
DIP	22.45 .884 9.65 .380	CXLTSH27500 CXLTSH37500 CXLTSH47500 CXLTSH57500	Gold flash plated over 50µin Nickel 15µin Gold plated over 50µin Nickel 30µin Gold plated over 50µin Nickel 50µin Gold plated over 50µin Nickel	75Ω	
	Receptacle Contact	CXLTSH25000 CXLTSH35000 CXLTSH45000 CXLTSH55000	Gold flash plated over 50µin Nickel 15µin Gold plated over 50µin Nickel 30µin Gold plated over 50µin Nickel 50µin Gold plated over 50µin Nickel	50Ω	

High Power Contact for Combination D-Sub

Contact Type	Shape	Part No.	Plating	Current Rating	Wire Size
		CHPTPS22000	Gold flash plated over 50µin Nickel		
	21.9	CHPTPS32000	15µin Gold plated over 50µin Nickel	20A	AWG
	.862 10.3	CHPTPS42000	30µin Gold plated over 50µin Nickel	20A	#12~#14
	.406	CHPTPS52000	50µin Gold plated over 50µin Nickel		
		CHPTPS24000	Gold flash plated over 50µin Nickel		
		CHPTPS34000	15µin Gold plated over 50µin Nickel	40.4	AWG
		CHPTPS44000	30µin Gold plated over 50µin Nickel	40A	#8~#10
Solder	Plug Contact	CHPTPS54000	50µin Gold plated over 50µin Nickel		
Cup		CHPTSS22000	Gold flash plated over 50µin Nickel		AWG #12~#14
P	21.8	CHPTSS32000	15µin Gold plated over 50µin Nickel	20A	
	.858 10.0	CHPTSS42000	30µin Gold plated over 50µin Nickel	20/1	
	.394	CHPTSS52000	50µin Gold plated over 50µin Nickel		
		CHPTSS24000	Gold flash plated over 50µin Nickel		
		40.4	AWG		
	Description in Operations	CHPTSS44000	30µin Gold plated over 50µin Nickel	- 40A	#8~#10
	Receptacle Contact	CHPTSS54000	SS54000 50µin Gold plated over 50µin Nickel		
		CHPTPC22000	Gold flash plated over 50µin Nickel		
	21.9	CHPTPC32000	15µin Gold plated over 50µin Nickel	20A	AWG
	862 10.3	CHPTPC42000	30µin Gold plated over 50µin Nickel	20/1	#12~#14
	.406	CHPTPC52000	50µin Gold plated over 50µin Nickel		
		CHPTPC24000	Gold flash plated over 50µin Nickel		
		CHPTPC34000	15µin Gold plated over 50µin Nickel	40.4	AWG
0.1	Diver Original	CHPTPC44000	30µin Gold plated over 50µin Nickel	40A	#8~#10
Crimp	Plug Contact	CHPTPC54000	50µin Gold plated over 50µin Nickel		
Туре	1	CHPTSC22000	Gold flash plated over 50µin Nickel		
	21.8	CHPTSC32000	15µin Gold plated over 50µin Nickel	20A	AWG
	.858 10.0	CHPTSC42000	30µin Gold plated over 50µin Nickel	20/1	#12~#14
		CHPTSC52000	50µin Gold plated over 50µin Nickel		
		CHPTSC24000	Gold flash plated over 50µin Nickel		
		CHPTSC34000	15µin Gold plated over 50µin Nickel	40.4	AWG
		CHPTSC44000	30µin Gold plated over 50µin Nickel	40A	#8~#10
	Receptacle Contact	CHPTSC54000 ³ 50µin Gold plated over 50µin Nickel			


Current	Crimp and Solder Terminations							
Rating	DIM. ∉A min.	DIM.∉A max.	DIM. B	DIM. H max.				
20A	1.8(.071)	2.6(.102)	8.0(.315)~	16 5(650)				
40A 2.9(.114)		4.5(.177)	8.8(.346)	16.5(.650)				

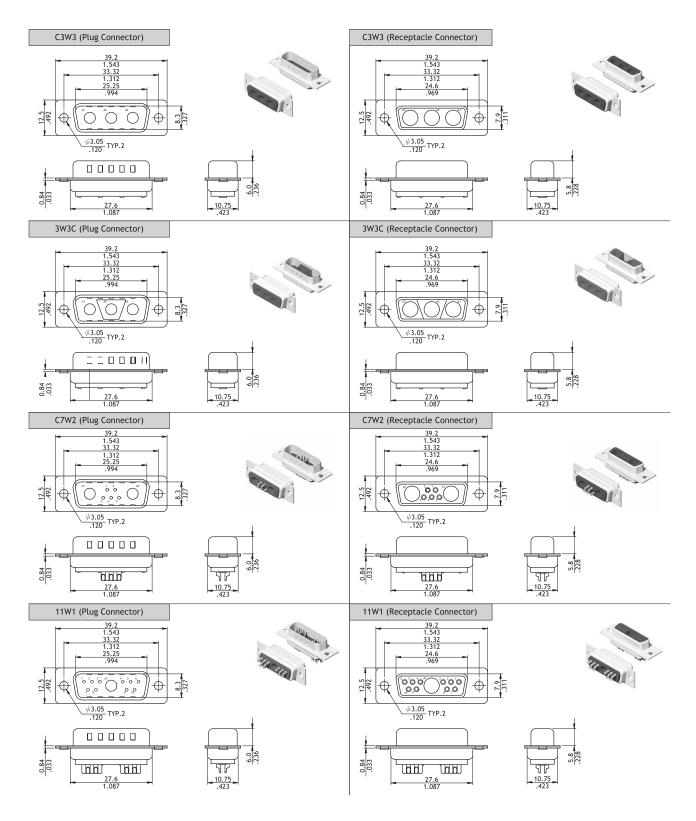
ScviLux 🛠


High Power Contact for Combination D-Sub

Contact Type	Shape	Part No.	Plating	Current Rating			
		CHPTPV22000	Gold flash plated over 50µin Nickel				
	16.9 .665 5 2	CHPTPV32000	15µin Gold plated over 50µin Nickel	20A			
	.665 5.3	CHPTPV42000	30µin Gold plated over 50µin Nickel	20/1			
		CHPTPV52000	50µin Gold plated over 50µin Nickel				
		CHPTPV24000	Gold flash plated over 50µin Nickel				
		CHPTPV34000	15µin Gold plated over 50µin Nickel	40.4			
	Dhur Contont	CHPTPV44000	30µin Gold plated over 50µin Nickel	40A			
Straight	Plug Contact	CHPTPV54000	50µin Gold plated over 50µin Nickel				
DIP	47.4	CHPTSV22000	Gold flash plated over 50µin Nickel				
BI	673	CHPTSV32000	15µin Gold plated over 50µin Nickel	20A			
	5.3	CHPTSV42000	30µin Gold plated over 50µin Nickel	20/1			
		CHPTSV52000	50µin Gold plated over 50µin Nickel				
		CHPTSV24000	Gold flash plated over 50µin Nickel				
		CHPTSV34000	15µin Gold plated over 50µin Nickel	- 40A			
	December la Ocastant	CHPTSV44000	30µin Gold plated over 50µin Nickel	40A			
	Receptacle Contact	CHPTSV54000					
	18.84	CHPTPH22000	Gold flash plated over 50µin Nickel				
	742 7.24	CHPTPH32000	15µin Gold plated over 50µin Nickel	20A			
	.285	CHPTPH42000	30µin Gold plated over 50µin Nickel	20/1			
		CHPTPH52000	50µin Gold plated over 50µin Nickel				
		CHPTPH24000	Gold flash plated over 50µin Nickel				
	413	CHPTPH34000	15µin Gold plated over 50µin Nickel	40.4			
Right		CHPTPH44000	30µin Gold plated over 50µin Nickel	- 40A			
-	Plug Contact	CHPTPH54000	50µin Gold plated over 50µin Nickel				
Angle	19.04	CHPTSH22000	Gold flash plated over 50µin Nickel				
DIP	.750 7.24	CHPTSH32000	15µin Gold plated over 50µin Nickel	20A			
	.285	CHPTSH42000	30µin Gold plated over 50µin Nickel	20/1			
		CHPTSH52000 50µin Gold plated over					
		CHPTSH24000	Gold flash plated over 50µin Nickel				
	413	CHPTSH34000	15µin Gold plated over 50µin Nickel				
		CHPTSH44000	30µin Gold plated over 50µin Nickel	- 40A			
	Receptacle Contact	CHPTSH54000	50µin Gold plated over 50µin Nickel				

P/N CD-RWT-0100

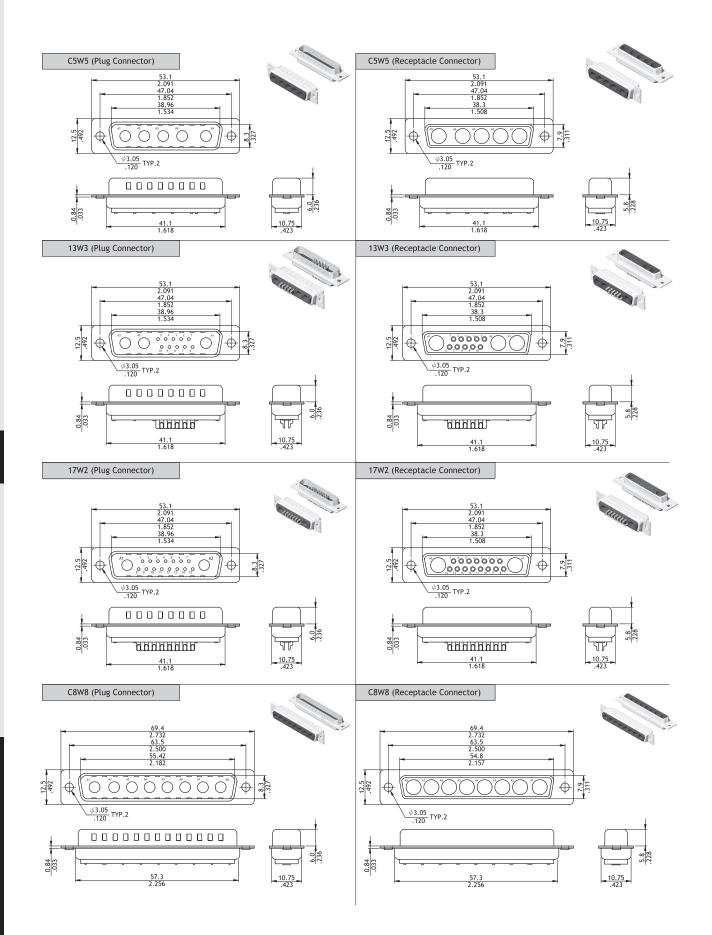
The COMBO D-SUB EXTRACTOR. It is used in Coaxial or High power contact. (available for male/female)



Combination D-Sub Housing

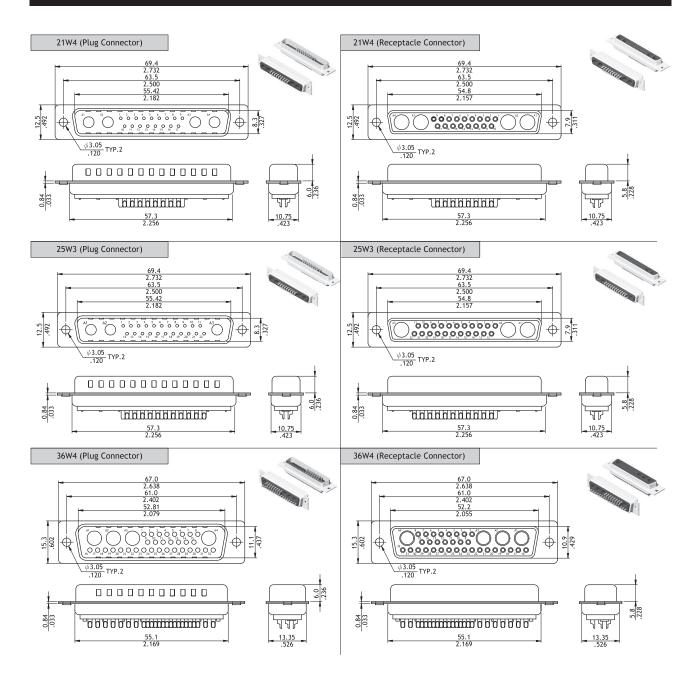
- O Pre-loaded stamped signal contact
- \odot Can be mated with coaxial or high power contact
- \odot High power contact available for crimp or solder type in 20A or 40A
- O Metal shell with ground indents
- \odot Riveted Hex nuts or hardware accessories options available

RoHS_{compliant} 🕲 🔊



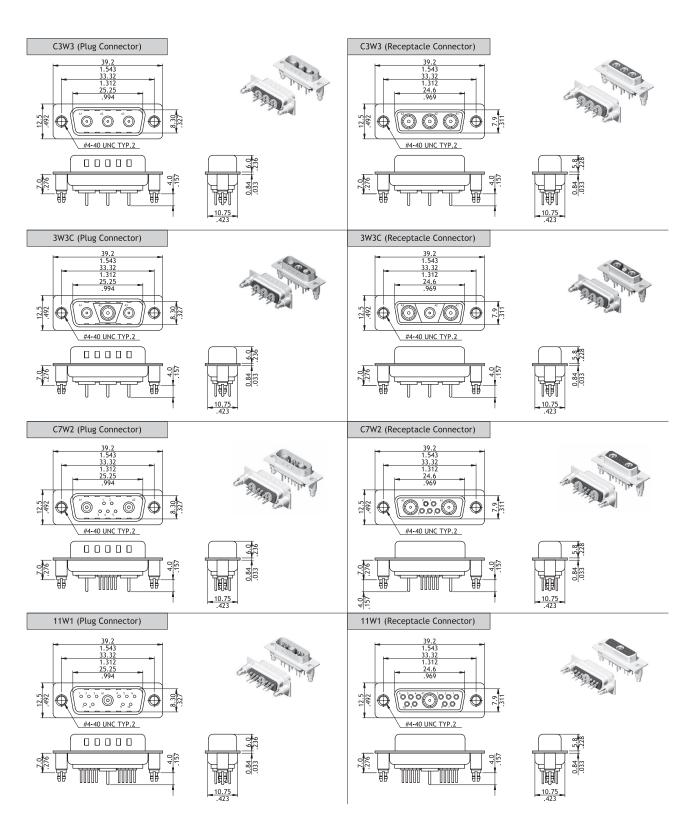
D-SUB CONNECTORS

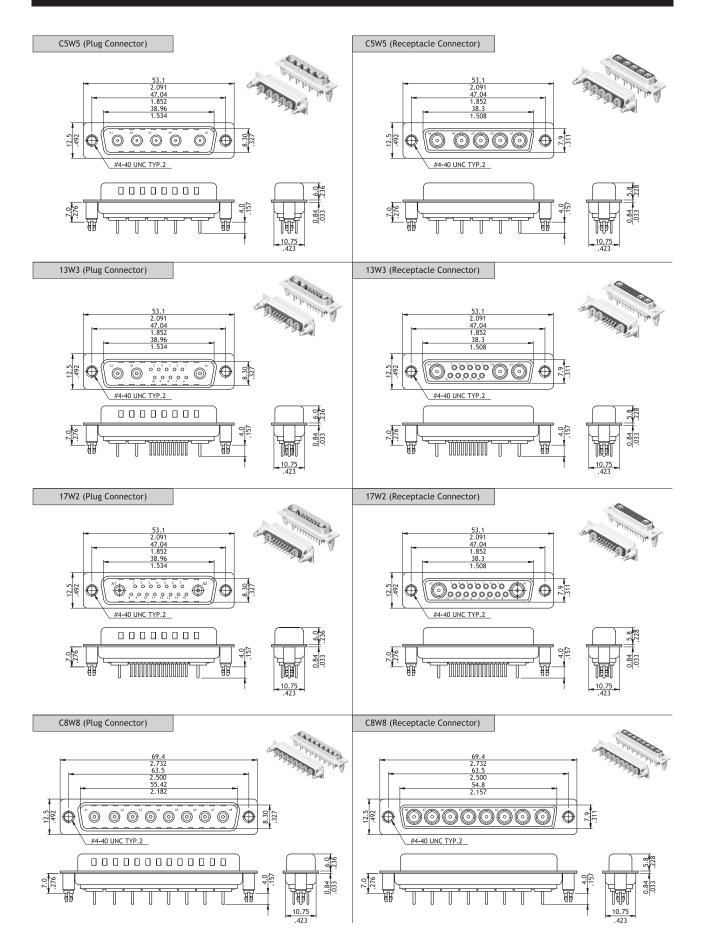
347


Combination D-Sub Housing

D-SUB CONNECTORS

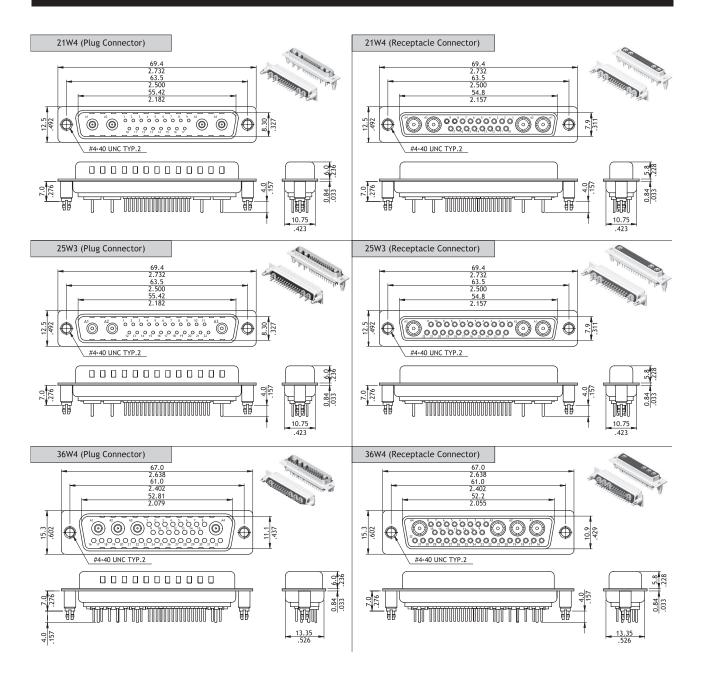
Combination D-Sub Housing

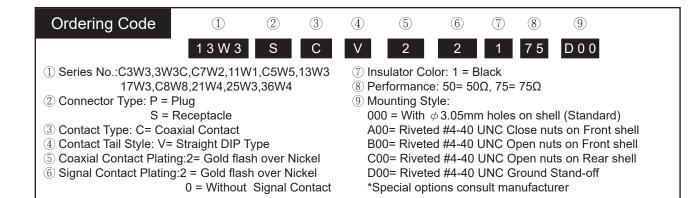

Ordering Code	1	2	3	4	(5)	6			
	1 3 W 3	P 0	S 0	А	100	000			
2 Connector Type: P0	W8,21W4,25W = Plug = Receptacle der Cup Type C, C8W8 Serie: g: ash over Nickel	/3,36W4 s,	,13W3	6 Of 00 A0 B0 C0 *S C0	her Option 0 = With 00= Rivete 00= Rivete 00= Rivete pecial opt onnectors		noles on s NC Close NC Open NC Open It manufa I/high pov	nuts on F nuts on F nuts on R cturer wer contac	Front shell Front shell Rear shell cts should be


RoHS_{compliant} 🛞 🔊

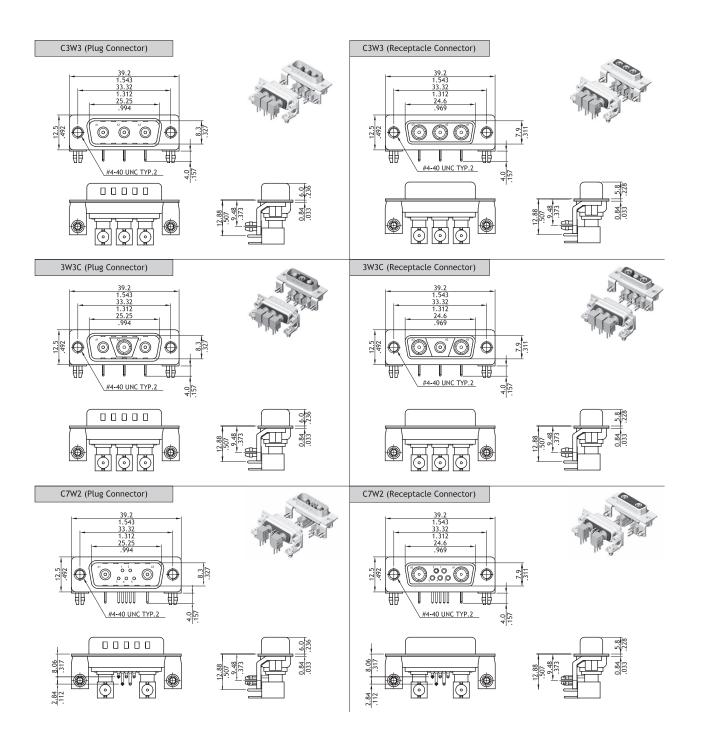
Coaxial Straight DIP Combination D-Sub

- ◎ Standard type with #4-40 UNC threaded ground stand-off
- \odot Combined with stamped signal and machined coaxial contacts
- \odot For top entry connection
- \odot Metal shell with groud indents
- © Riveted Hex nuts or hardware accessories options available

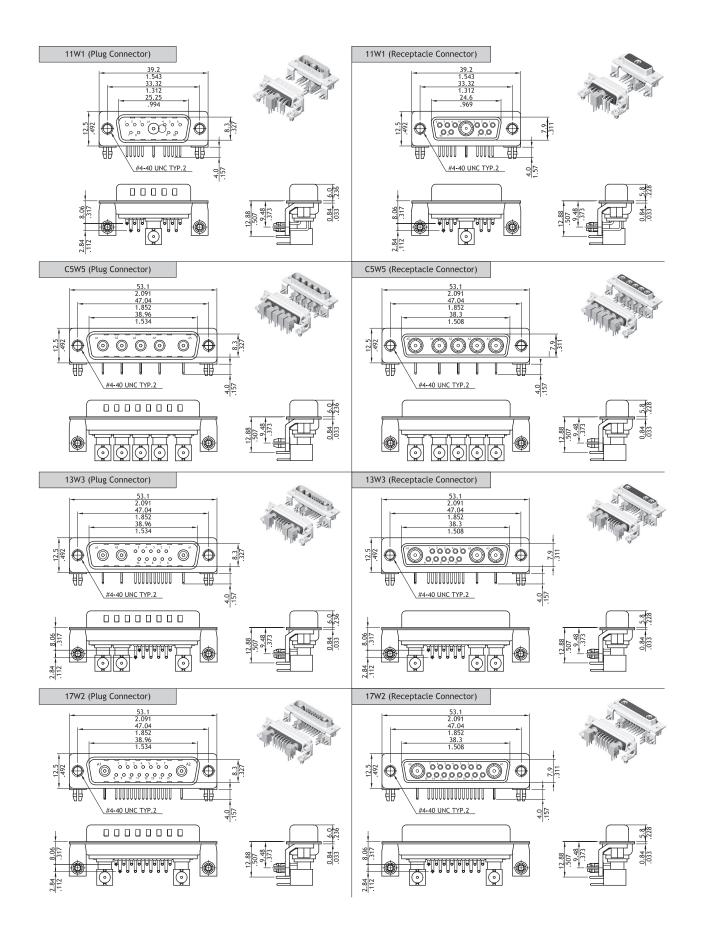


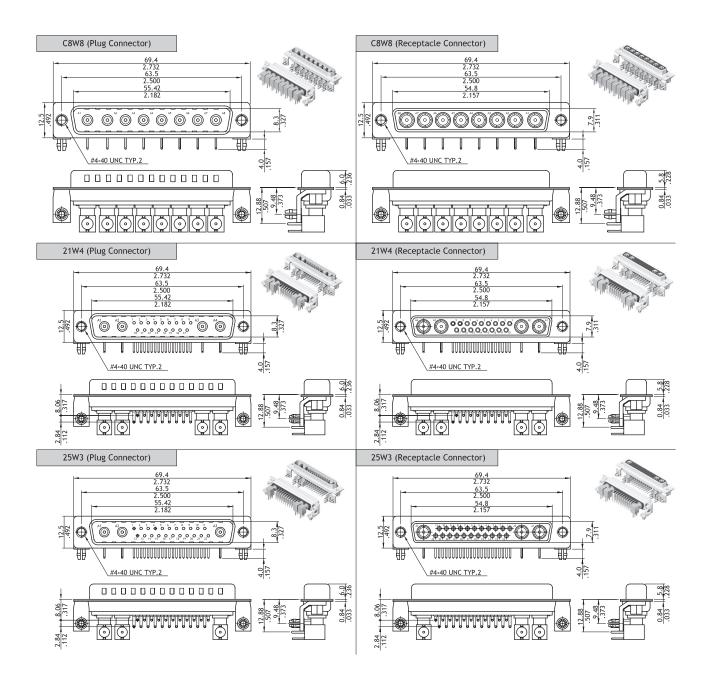

Coaxial Straight DIP Combination D-Sub

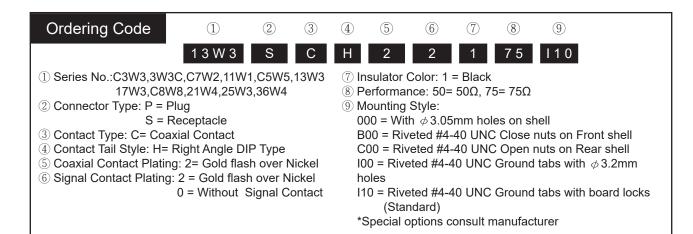
Coaxial Straight DIP Combination D-Sub



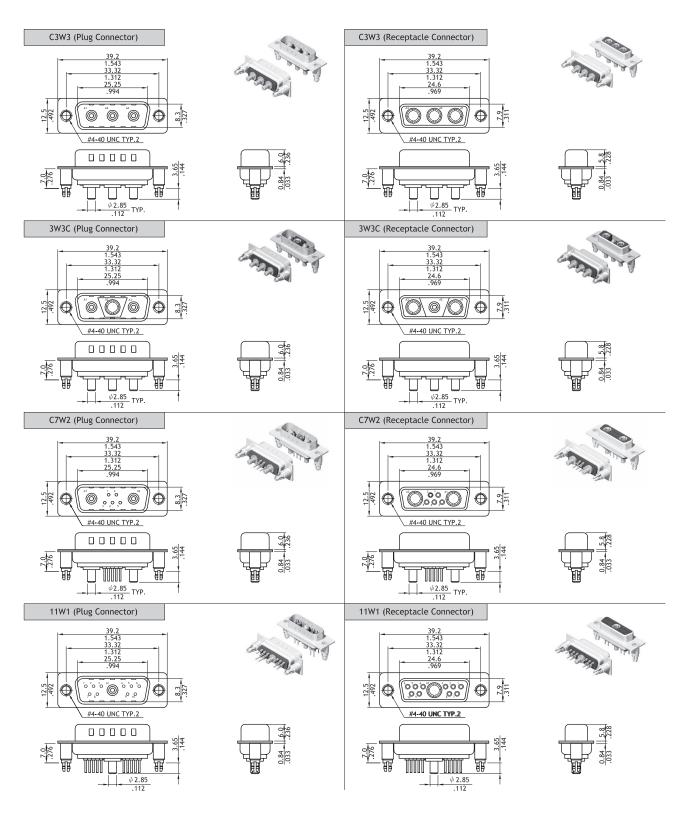
Coaxial Right Angle DIP Combination D-Sub

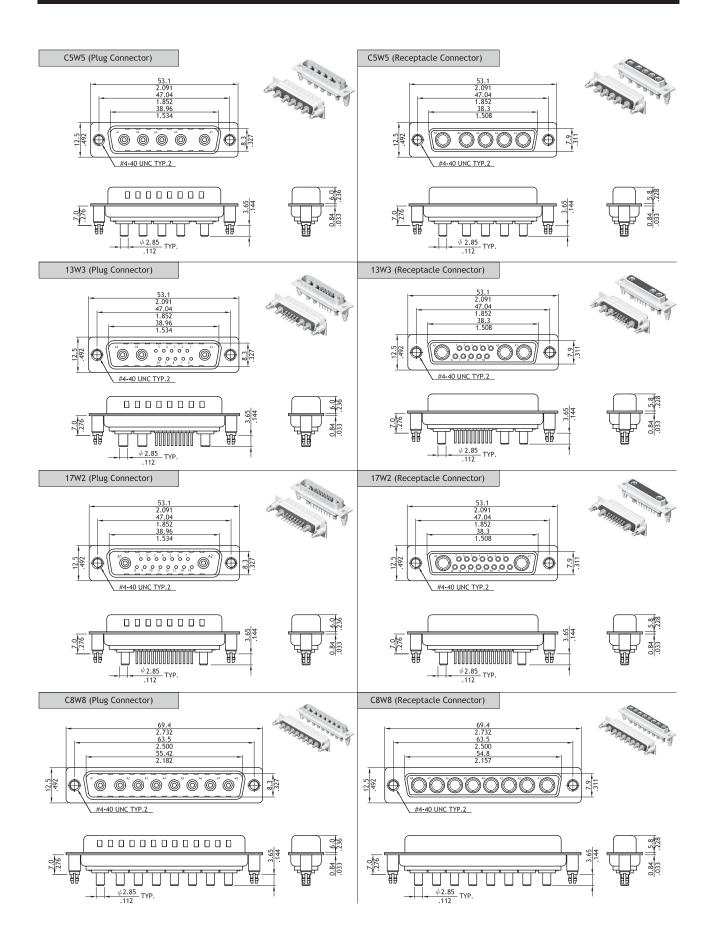

- Standard type with #4-40 UNC threaded ground stand tabs and board locks to secure connector on board
- O Combined with stamped signal and machined coaxial contacts
- \odot For side entry connection
- O Metal shell with groud indents
- © Riveted Hex nuts or hardware accessories options available



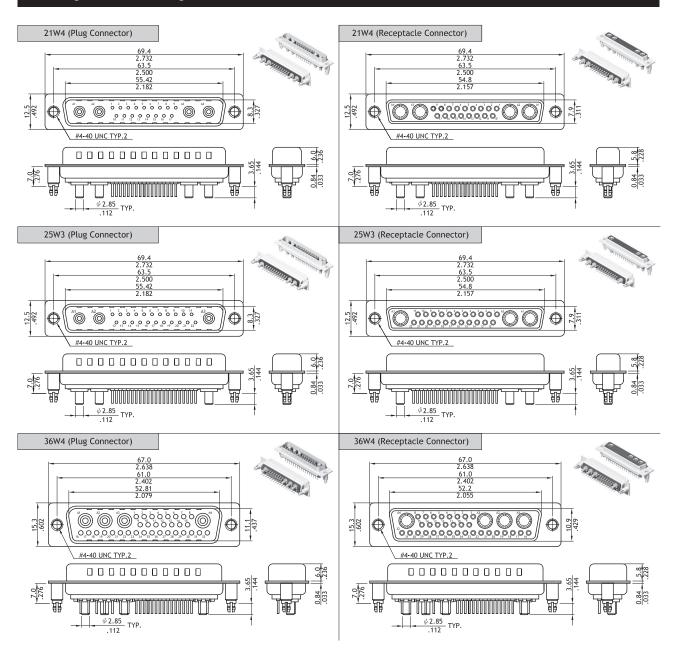

Coaxial Right Angle DIP Combination D-Sub

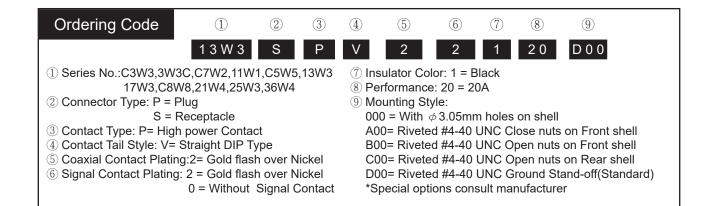
Coaxial Right Angle DIP Combination D-Sub

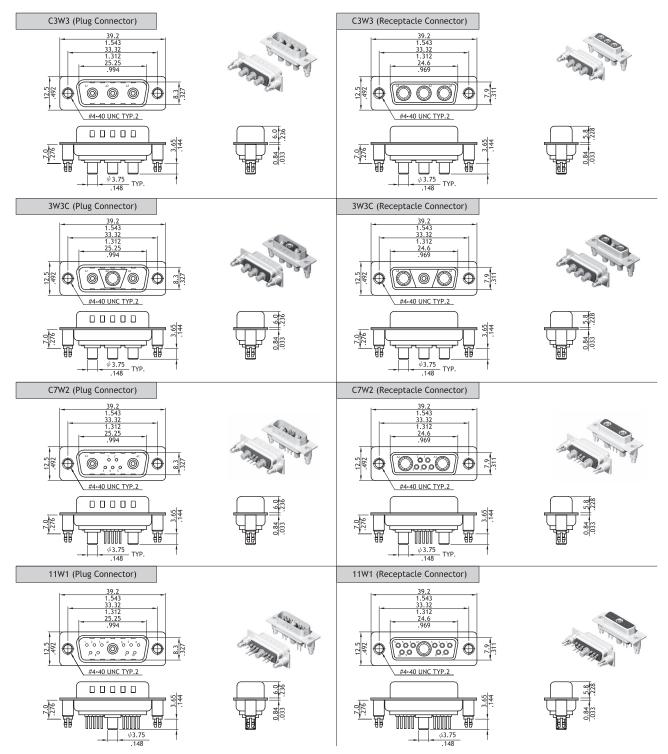


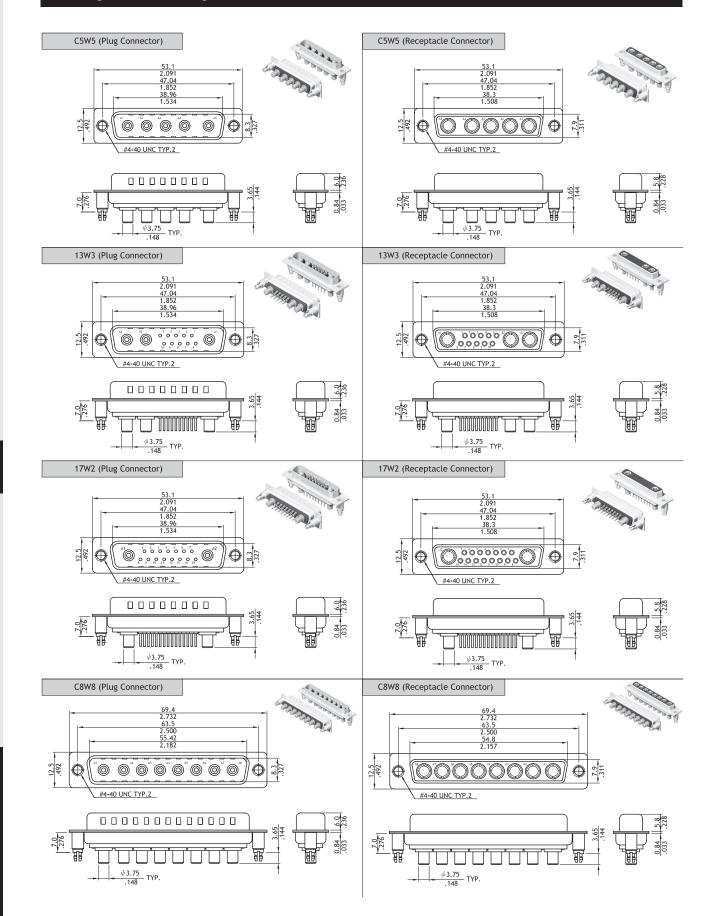

D-SUB CONNECTORS

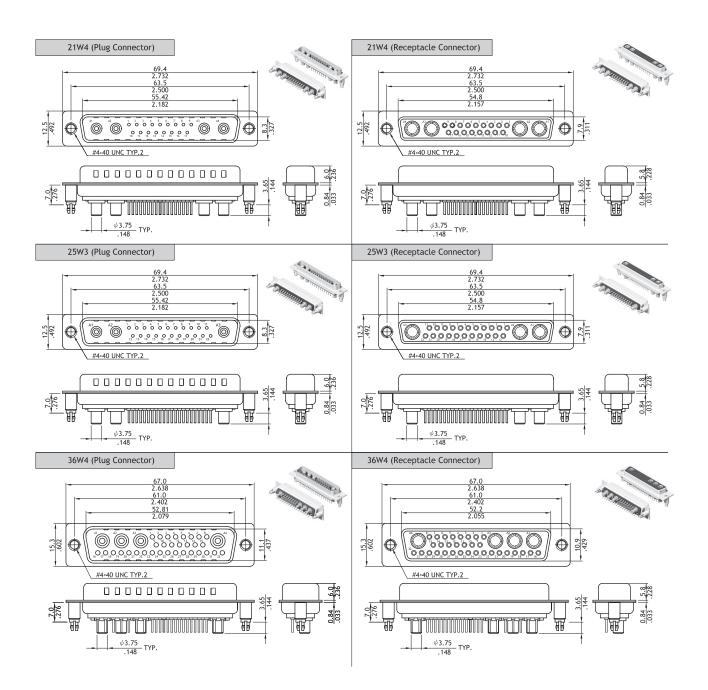
- ◎ Standard type with #4-40 UNC threaded ground stand-off
- \odot Combined with stamped signal and machined 20A high power contacts
- \bigcirc For top entry connection
- O Metal shell with groud indents
- © Riveted Hex nuts or hardware accessories options available

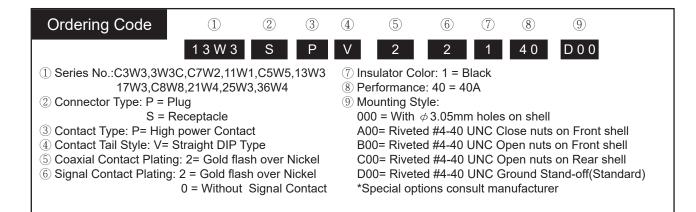


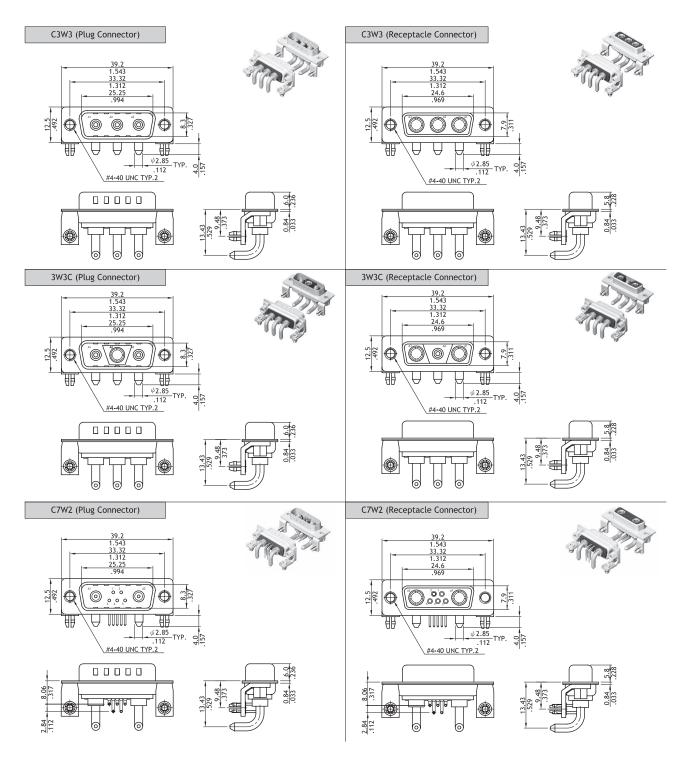




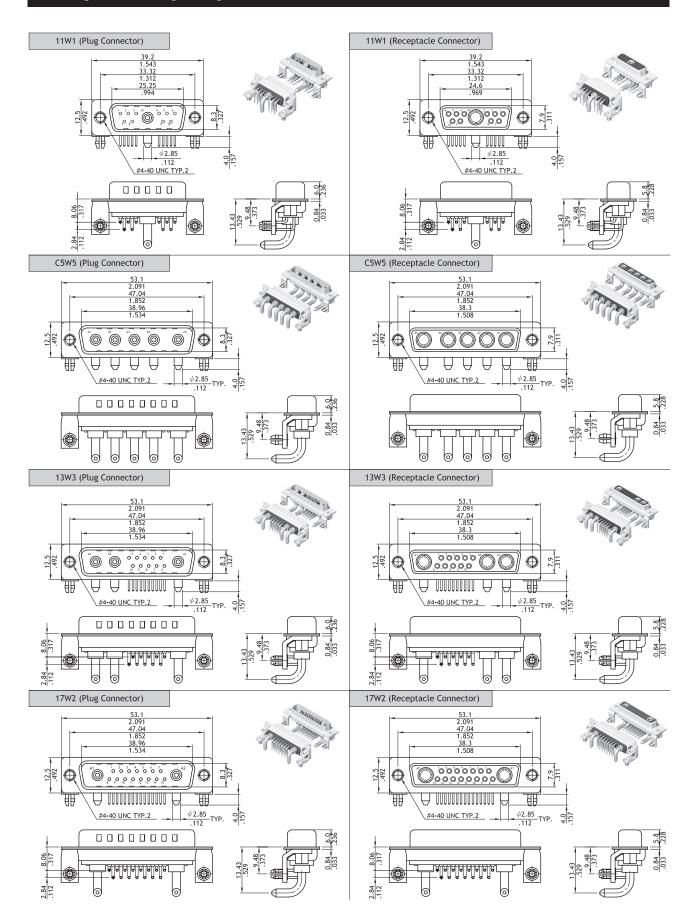

- \odot Standard type with #4-40 UNC threaded ground stand-off
- \odot Combined with stamped signal and machined 40A high $\,$ power contacts $\,$
- \bigcirc For top entry connection
- O Metal shell with ground indents
- $\ensuremath{\bigcirc}$ Riveted Hex nuts or hardware accessories options available



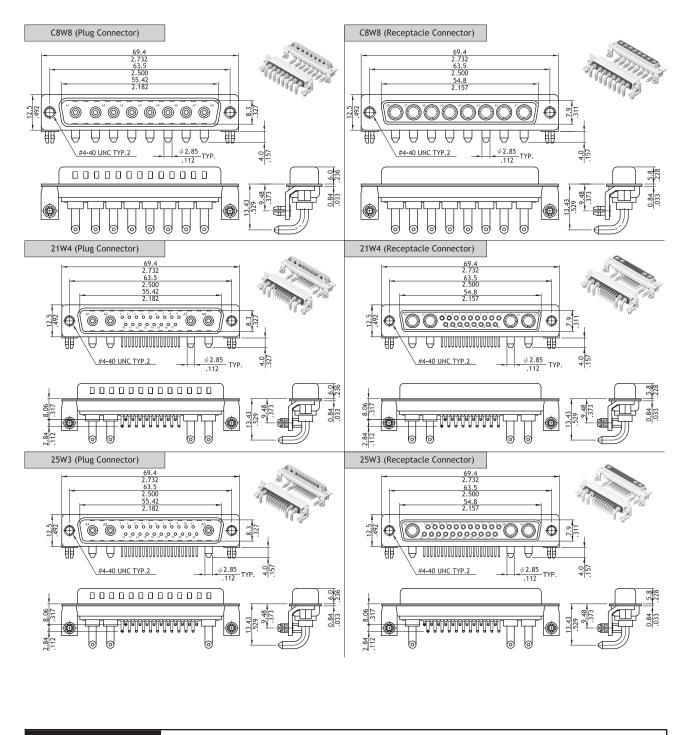

CD

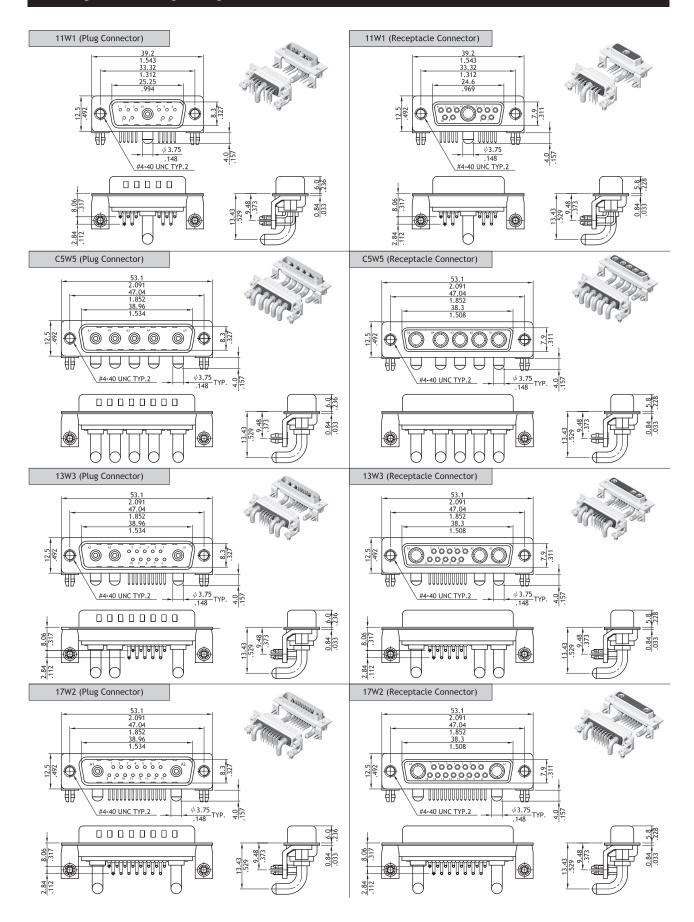


D-SUB CONNECTORS

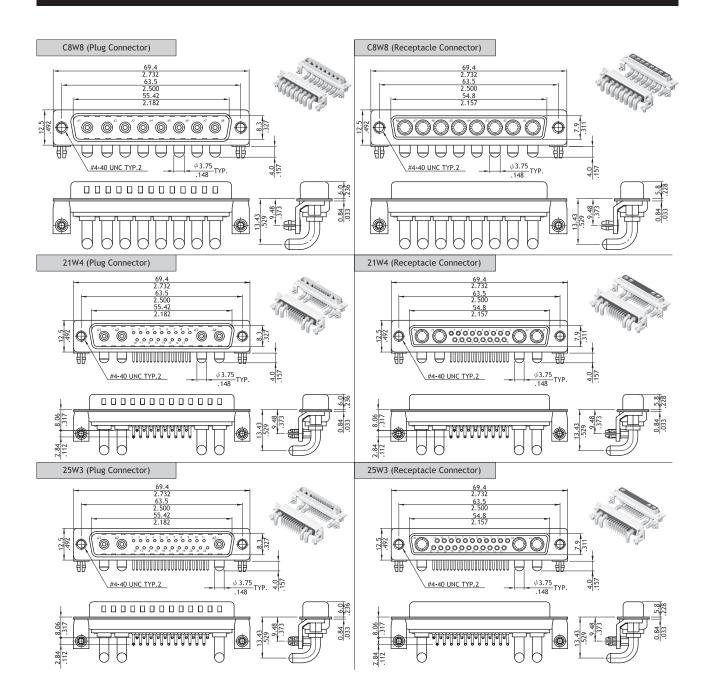

20A High Power Right Angle DIP Combination D-Sub

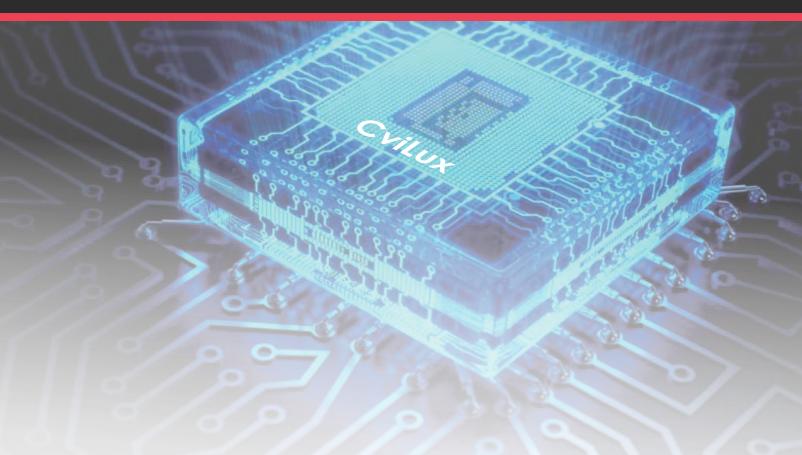
- \odot Standard type with #4-40 UNC threaded ground tabs
- and board locks to secure connector on board
- \bigcirc Combined with stamped signal and machined 20A high power contacts
- \bigcirc For side entry connection
- \odot Metal shell with ground indents
- \odot Riveted Hex nuts or hardware accessories options available


RoHS_{compliant} 🔊 🔊



- Standard type with #4-40 UNC threaded ground tabs and board locks to secure connector on board
- © Combined with stamped signal and 40A high power contacts
- ◎ For side entry connection
- O Metal shell with ground indents
- © Riveted Hex nuts or hardware accessories options available





Ordering Code (2) (3) (4) (5) 6) (8) (9) 1 (7)13W3 S Н 2 100 Ρ 2 1 40 ① Series No.:C3W3,3W3C,C7W2,11W1,C5W5,13W3 ⑦ Insulator Color: 1 = Black 17W3,C8W8,21W4,25W3,36W4 8 Performance: 40 = 40A 2 Connector Type: P = Plug 9 Mounting Style: S = Receptacle 000 = With ϕ 3.05mm holes on shell ③ Contact Type: P= High power Contact B00= Riveted #4-40 UNC Open nuts on Front shell C00= Riveted #4-40 UNC Open nuts on Rear shell ④ Contact Tail Style: H= Right Angle DIP Type 5 High Power Contact Plating:2= Gold flash over I00= Riveted #4-40 UNC Ground tabs with ϕ 3.2mm holes Nickel 6 Signal Contact Plating: 2 = Gold flash over Nickel I10= Riveted #4-40 UNC Ground tabs with borad locks 0 = Without Signal Contact (Standard)

CVILUX PATENT, CERTIFICATE, AWARD

CviLux R&D strength means maximizing our patents, awards and international standard of QC and certificates. We challenge our worldwide granted and pending patents listed as follows (- Oct., 2021) :

Taiwan : 157 patents granted and pendingChina : 116 patents granted and pendingUSA : 10 patents granted and pendingJapan : 3 patents granted and pending

CviLux Technology (Suzhou) Co., Ltd.

Anhui CviLux Technology Co., Ltd. CviLux Lao Co., Ltd.

Marketing Site

CviLux Corporation CviLux Technology (Shenzhen) Corporation CviLux USA Corporation CviLux Opro9 Europe B.V. CviLux Opro9 Europe B.V. CviLux SDN BHD CviLux JAPAN Office CviLux KOREA Corporation CviLux QINGDAO Office CviLux XIAMEN Office Allsor Technology Corporation Allsor Electronics Co., Ltd.

CviCloud Corporation

CviCloud (SZ) Limited

Factory Site

Taiwan CviLux Corporation

South China CviLux Electronics (Dongguan)Co., Ltd. Dongguan Qunhan Electronics Co., Ltd.

East China CviLux Technology (Suzhou) Co., Ltd.

West China CviLux Technology (Chongqing) Co., Ltd.

Central China Anhui CviLux Technology Co., Ltd.

Lao CviLux Lao Co., Ltd.

CATALOGUE NO. CGC2022A